Journal of Electronic Materials

, Volume 45, Issue 7, pp 3314–3323 | Cite as

Electronic Band Structures of the Highly Desirable III–V Semiconductors: TB-mBJ DFT Studies

  • Gul Rehman
  • M. Shafiq
  • Saifullah
  • Rashid Ahmad
  • S. Jalali-Asadabadi
  • M. Maqbool
  • Imad Khan
  • H. Rahnamaye-Aliabad
  • Iftikhar Ahmad


The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III–V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha’s modified Becke–Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III–V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.


III–V semiconductors optical materials electronic band structure non-regular TB-mBJ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the financial support from the Higher Education Commission of Pakistan (HEC), Project No. 20-3959/NRPU/R&D/HEC2014/119.


  1. 1.
    B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).CrossRefGoogle Scholar
  2. 2.
    H. Xiao, J. Tahir-Kheli, and W.A. Goddard, J. Phys. Chem. Lett. 2, 212 (2011).CrossRefGoogle Scholar
  3. 3.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 22640 (2009).Google Scholar
  4. 4.
    A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).CrossRefGoogle Scholar
  5. 5.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).Google Scholar
  6. 6.
    W. Kohan and L.J. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
  7. 7.
    D. Koller, F. Tran, and P. Blaha, Phys. Rev. B. 83, 195134 (2011).Google Scholar
  8. 8.
    D. Koller, F. Tran, and P. Blaha, Phys. Rev. B. 85, 155109 (2012).CrossRefGoogle Scholar
  9. 9.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  10. 10.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, ed. K. Schwarz (Austria: Vienna University of Technology, 2001).Google Scholar
  11. 11.
    R. Gillen, S.J. Clark, and J. Robertson, Phys. Rev. B. 87, 125116 (2013).CrossRefGoogle Scholar
  12. 12.
    D.M. Bylander and L. Kleinman, Phys. Rev. B. 41, 7868 (1990).CrossRefGoogle Scholar
  13. 13.
    O. Madelung, ed., Semiconductors: Data Handbook (Berlin: Springer, 2004).Google Scholar
  14. 14.
    P. Carrier and S.H. Wei, J. Appl. Phys. 97, 033707 (2005).CrossRefGoogle Scholar
  15. 15.
    T. Kotani and M.V. Schilfgaarde, Solid State Comm. 121, 461 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).CrossRefGoogle Scholar
  17. 17.
    F. Bechstedt, F. Fuchs, and G. Kresse, Phys. Status Solidi. B 246, 1877 (2009).Google Scholar
  18. 18.
    C.B. Geller, W. Wolf, S. Picozzi, A. Continenza, R. Asahi, W. Mannstadt, A.J. Freeman, and E. Wimmer, J. Appl. Phys. Lett. 79, 368 (2001).Google Scholar
  19. 19.
    I.N. Remediakis and E. Kaxiras, Phys. Rev. B. 59, 5536 (1998).CrossRefGoogle Scholar
  20. 20.
    A. Zaoui and F. El Hassan, J. Phys.: Condens. Matter 13, 253 (2001).Google Scholar
  21. 21.
    J.A. Camargo and R. Baquero, Superficies Y Vacio. 26, 54 (2013).Google Scholar
  22. 22.
    M. Yousaf, M.A. Saeed, R. Ahmed, M.M. Alsardia, A.R. Mat Isa, and A. Shaari, Commun. Theor. Phys. 58, 777 (2012).Google Scholar
  23. 23.
    J.L. Melissa, M.H. Thomas, M. Henderson, and E.S. Gustavo, J. Phys. Condens. Matter 24, 145504 (2012).Google Scholar
  24. 24.
    J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).CrossRefGoogle Scholar
  25. 25.
    A. Rubio, J.L. Corkill, M.L. Cohen, E.L. Shirley, and S.G. Louie, Phys. Rev. B 48, 11810 (1993).CrossRefGoogle Scholar
  26. 26.
    B. Amin, S. Arif, I. Ahmad, M. Maqbool, R. Ahmad, S. Goumri-Said, and K. Prisbrey, J. Electron. Mater. 40, 1428 (2011).CrossRefGoogle Scholar
  27. 27.
    R. Ahmed, Fazal-e-Aleem, S.J. Hashemifar, H. Rashid, and H. Akbarzadeh. Commun. Theor. Phys. (Beijing, China) 52, 527 (2009).Google Scholar
  28. 28.
    J. Heyd, J.E. Perlta, and G.E. Scuseria, J. Chem. Phys. 123, 174101 (2005).CrossRefGoogle Scholar
  29. 29.
    F. El Haj Hassan, A. Breidi, S. Ghemid, B. Amrani, H. Meradji, and O. Pages, J. Alloys Compd. 499, 80 (2010).Google Scholar
  30. 30.
    B. Amin, I. Ahmad, and M. Maqbool, J. Lightwave Technol. 28, 223 (2010).CrossRefGoogle Scholar
  31. 31.
    M. Maqbool, B. Amin, and I. Ahmad, J. Opt. Soc. Am. B 26, 2181 (2009).CrossRefGoogle Scholar
  32. 32.
    S. Hussain, S. Dalui, R.K. Roy, and A.K. Pal, J. Phys. D Appl. Phys. 39, 2053 (2006).CrossRefGoogle Scholar
  33. 33.
    H. Salehi, H.A. Bandehian, and M. Farbod, Mater. Sci. Semicond. Process. 26, 477 (2014).CrossRefGoogle Scholar
  34. 34.
    M. Yousaf, M.A. Saeed, R. Ahmed, M.M. Alsardia, A.R.M. Isa, and A. Shaari, Commun. Theor. Phys. 58, 777 (2012).CrossRefGoogle Scholar
  35. 35.
    H. Jiang, J. Chem. Phys. 138, 134115 (2013).CrossRefGoogle Scholar
  36. 36.
    J.A. Camargo-Martinez and R. Baquero, Phys. Rev. B. 86, 195106 (2012).CrossRefGoogle Scholar
  37. 37.
    M. Yazdanmehr, S. Jalali Asadabadi, A. Nourmohammadi, M. Ghasemzadeh, and M. Rezvanian, Nanoscale Res. Lett. 7, 488 (2012).Google Scholar
  38. 38.
    E. Gordanian, S. Jalali Asadabadi, I. Ahmad, S. Rahimi, and M. Yazdani-Kacoei, RSC Adv. 5, 23320 (2015).Google Scholar
  39. 39.
    H. Papi, S. Jalali Asadabadi, A. Nourmohammadi, I. Ahmad, J. Nematollahi, and M. Yazdanmehr, RSC Adv. 5, 55088 (2015).Google Scholar
  40. 40.
    S. Jalali-Asadabadi, E. Ghasemikhah, T. Ouahrani, B. Nourozi, M. Bayat-Bayatani, S. Javanbakht, H.A. Rahnamaye Aliabad, I. Ahmad, J. Nematollahi, and M. Yazdani-Kachoei, J. Electron. Mater. 45, 339 (2016).Google Scholar
  41. 41.
    D. Waroquiers, A. Lherbier, A. Miglio, M. Stankovske, S. Ponce, M.J.T. Oliveira, M. Giantomassi, G.-M. Rignanese, and X. Gonze, Phys. Rev. B 075121 (2013).Google Scholar
  42. 42.
    D.E. Aspne and A.A. Studna, Phys. Rev. B 27, 985 (1983).CrossRefGoogle Scholar
  43. 43.
    D. Penn, Phys. Rev. 128, 2093 (1962).CrossRefGoogle Scholar
  44. 44.
    A.H. Reshak, J. Chem. Phys. 125, 034710 (2006).CrossRefGoogle Scholar
  45. 45.
    A.H. Reshak, Eur. Phys. J. B 47, 503 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Gul Rehman
    • 1
    • 2
  • M. Shafiq
    • 1
    • 2
  • Saifullah
    • 1
    • 2
  • Rashid Ahmad
    • 3
  • S. Jalali-Asadabadi
    • 4
  • M. Maqbool
    • 5
  • Imad Khan
    • 1
    • 2
  • H. Rahnamaye-Aliabad
    • 6
  • Iftikhar Ahmad
    • 1
    • 2
  1. 1.Center for Computational Materials ScienceUniversity of MalakandChakdaraPakistan
  2. 2.Department of PhysicsUniversity of MalakandChakdaraPakistan
  3. 3.Department of ChemistryUniversity of MalakandChakdaraPakistan
  4. 4.Department of Physics, Faculty of ScienceUniversity of Isfahan (UI)IsfahanIran
  5. 5.Department of Physics and AstronomyBall State UniversityMuncieUSA
  6. 6.Department of PhysicsHakim Sabzevari UniversitySabzevarIran

Personalised recommendations