Skip to main content
Log in

Strain Manipulated Magnetic Properties in ZnO and GaN Induced by Cation Vacancy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of isotropic strains on the magnetic properties in ZnO and GaN induced by cation vacancies are comparatively investigated by density functional theory calculations. The magnetic moments and the couplings between vacancies in different charged states are calculated as a function of strains. The modulation of strain on the magnetic properties relies on the materials and the charge states of cation vacancies in them. As the occurrence of charge transfer in ZnO:V Zn under compression, the coupling between \(V_{\rm{Zn}}^{0} \) is antiferromagnetic (AFM) and it could be stabilized by strains. Tensions can strengthen the ferromagnetic (FM) coupling between \(V_{\rm{Zn}}^{0} \) but weaken that of \(V_{\rm{Ga}}^{ - } \). The neutral V Ga are always AFM coupling under strains from −6 to +6% and could be stabilized by compressions. The interactions between \(V_{\rm{Ga}}^{ - } \) are always FM with ignorable variations under strains; however, the FM couplings between \(V_{\rm{Ga}}^{2 - } \) could be strengthened by compressions. These varying trends of magnetic coupling under strains are interpreted by the band coupling models. Therefore, strain-engineering provides a route to manipulate and design high Curie temperature ferromagnetism derived and mediated by intrinsic defect for spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 5455 (2000).

    Article  Google Scholar 

  2. H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Ding, L.H. Van, and J.H. Yin, Phys. Rev. Lett. 99, 127201 (2007).

    Article  Google Scholar 

  3. H.W. Peng, H.J. Xiang, S.-H. Wei, S.S. Li, J.B. Xia, and J.B. Li, Phys. Rev. Lett. 102, 017201 (2009).

    Article  Google Scholar 

  4. P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).

    Article  Google Scholar 

  5. O. Volnianska and P. Boguslawsk, Phys. Rev. B. 83, 205205 (2011).

    Article  Google Scholar 

  6. L. Shen, R.Q. Wu, H. Pan, G.W. Peng, M. Yang, Z.D. Sha, and Y.P. Feng, Phys. Rev. B. 78, 073306 (2008).

    Article  Google Scholar 

  7. H.F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, and U.V. Waghmare, Phys. Rev. Lett. 94, 187204 (2005).

    Article  Google Scholar 

  8. E. Kan, F. Wu, Y.M. Zhang, H.J. Xiang, R.F. Lu, C.Y. Xiao, K.M. Deng, and H.B. Su, Appl. Phys. Lett. 100, 072401 (2012).

    Article  Google Scholar 

  9. T.M. Ritter, B.A. Weinstein, R.M. Park, and M.C. Tamargo, Phys. Rev. Lett. 76, 964 (1996).

    Article  Google Scholar 

  10. V. Iota and B.A. Weinstein, Phys. Rev. Lett. 81, 4955 (1998).

    Article  Google Scholar 

  11. X.P. Wang, M.W. Zhao, T. He, Z.H. Wang, and X.D. Liu, Appl. Phys. Lett. 102, 062411 (2013).

    Article  Google Scholar 

  12. H.H. Ren, J.K. Jian, C. Chen, D. Pan, A. Ablat, Y.F. Sun, J. Li, and R. Wu, Appl. Phys. A 116, 185C191 (2014).

    Article  Google Scholar 

  13. H.T. Ren, G. Xiang, G.X. Gu, X. Zhang, W.J. Wang, P. Zhang, B.Y. Wang, and X.Z. Cao, J. Nanomater. 5, 295358 (2012).

    Google Scholar 

  14. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, Phys. Rev. B 77, 205411 (2008).

    Article  Google Scholar 

  15. M. Bououdina, A.A. Dakhel, M. El-Hilo, D.H. Anjum, M.B. Kanoun, and S. Goumri-Said, RSC Adv. 5, 33233 (2015).

    Article  Google Scholar 

  16. Y.B. Lu, Y. Dai, W. Wei, Y.T. Zhu, and B.B. Huang, Chem. Phys. Chem. 14, 3916 (2013).

    Google Scholar 

  17. L. Bergqvist, B. Belhadji, S. Picozzi, and P.H. Dederichs, Phys. Rev. B. 77, 014418 (2008).

    Article  Google Scholar 

  18. N.M. Souza-Neto, D. Haskel, Y.-C. Tseng, and G. Lapertot, Phys. Rev. Lett. 102, 057206 (2009).

    Article  Google Scholar 

  19. I.N. Goncharenko and I. Mirebeau, Phys. Rev. Lett. 80, 1082 (1998).

    Article  Google Scholar 

  20. A. Mir, B. Bekkouche, A. Boukortt, S. Kacimi, M. Djermouni, and A. Zaoui, Model. Numer. Simul. Mater. Sci. 2, 37–42 (2012).

    Google Scholar 

  21. G.M. Dalpian, S.-H. Wei, X.G. Gong, A.J.R. Silva, and A. Fazzio, Solid State Commun. 138, 353 (2006).

    Article  Google Scholar 

  22. J.Y. Zhu, F. Liu, G.B. Stringfellow, and S.-H. Wei, Phys. Rev. Lett. 105, 195503 (2010).

    Article  Google Scholar 

  23. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  24. P.E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  25. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  26. H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  27. P. Dev and P.H. Zhang, Phys. Rev. B 81, 085207 (2010).

    Article  Google Scholar 

  28. W.A. Adeagbo, G. Fischer, A. Ernst, and W. Hergert, J. Phys. Condens. Matter 22, 436002 (2010).

    Article  Google Scholar 

  29. H.W. Peng, J.B. Li, and S.-H. Wei, Appl. Phys. Lett. 102, 122409 (2013).

    Article  Google Scholar 

  30. J. Kudrnovsky, I. Turek, V. Drchal, F. Mca, P. Weinger, and P. Bruno, Phys. Rev. B 69, 11 (2004).

    Article  Google Scholar 

  31. F. Mca, J. Kudrnovsky, V. Drchal, and G. Bouzerar, Appl. Phys. Lett. 92, 18–20 (2008).

    Google Scholar 

Download references

Acknowledgements

Dr. Yanqin Gai is grateful to Professor Zhenyu Li for helpful discussions. We acknowledge financial supports from the Fundamental Research Funds for the Central Universities under Grant No. 2010LKWL03, the Special Fund for Theoretical Physics under Grant No. 11047130, the National Natural Science Foundation of China under Grant No. 11104345 and the Key Project of Chinese National Programs for Fundamental Research and Development(973 program) under Grant No. 2011CB302003. We are grateful to the Advanced Analysis and Computation Center of CUMT for the award of CPU hours to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqin Gai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, Y., Jiang, J., Wu, Y. et al. Strain Manipulated Magnetic Properties in ZnO and GaN Induced by Cation Vacancy. J. Electron. Mater. 45, 3300–3306 (2016). https://doi.org/10.1007/s11664-016-4482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4482-9

Keywords

Navigation