Skip to main content

Advertisement

Log in

Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter (S r  = r 2 /r 1), dimensionless temperature ratio (θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

r :

Radius (m)

A :

Area (m2)

Ex:

Exergy (W)

I :

Current (A)

Irr:

Irreversibility (W)

K :

Thermal conductance (W/K)

P :

Electrical power (W)

Q :

Heat (W)

R :

Electrical resistance (Ω)

S :

Entropy (W/K)

T :

Temperature (K)

Z :

Figure of merit (K−1)

θ :

Dimensionless temperature (theta)

α :

Seebeck coefficient (V/K)

η :

Energy efficiency

k :

Thermal conductivity (W/mK)

ρ :

Electrical resistivity (Ωm)

σ :

Electrical conductivity (S/m)

Δ:

Difference

Ψ:

Exergy efficiency

φ :

Angle

τ:

Thomson coefficient (V/K)

δ :

Thickness (m)

1:

Inner

2:

Outer

a:

Environment

c:

Cold side of TEHP

d:

Destroyed

dr:

Infinitesimal

gen:

Generation

h:

Hot side of TEHP

in:

Input

loss:

Loss

m:

Mean

n :

n type material

o:

Reference

out:

Output

p :

p type material

storage:

Storage

t :

Total

M:

Maximum energy efficiency condition

Qh:

Heating power

References

  1. S.W. Angrist, Direct Energy Conversion (Boston: Allyn and Bacon, 1976), pp. 121–175.

    Google Scholar 

  2. H.J. Goldsmid, Electronic Refrigeration (London: Pion, 1986), pp. 1–14.

    Google Scholar 

  3. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995), pp. 617–620.

    Book  Google Scholar 

  4. S.C. Kaushik, Solar Refrigeration and Space Conditioning (Jodhpur: Divyajyoti Prakashan, 1989), pp. 195–208.

    Google Scholar 

  5. B. Mathiprakasam, SCT-93 Short Course on Thermoelectrics (ITS, Yokohama, November 08, 1993).

  6. C.B. Vining, Nat. Mater. 8, 83 (2009).

    Article  Google Scholar 

  7. L. Chen, J. Li, F. Sun, and C. Wu, Appl. Energy 85, 641 (2008).

    Article  Google Scholar 

  8. S. Riffat, X. Ma, and R. Wilson, Appl. Therm. Eng. 26, 494 (2006).

    Article  Google Scholar 

  9. F. Meng, L. Chen, F. Sun, and C. Wu, Int. J. Ambient Energy 30, 95 (2009).

    Article  Google Scholar 

  10. X. Gou, H. Xiao, and S. Yang, Appl. Energy 87, 3131 (2010).

    Article  Google Scholar 

  11. B. David, J. Ramousse, and L. Luo, Energy Convers. Manag. 60, 125 (2012).

    Article  Google Scholar 

  12. M.-J. Huang, R.-H. Yen, and A.-B. Wang, Int. J. Heat Mass Transf. 48, 413 (2005).

    Article  Google Scholar 

  13. M.-J. Huang, P.-K. Chou, and M.-C. Lin, Sens. Actuators, A 126, 122 (2006).

    Article  Google Scholar 

  14. W.-H. Chen, C.-Y. Liao, and C.-I. Hung, Appl. Energy 89, 464 (2012).

    Article  Google Scholar 

  15. Y. Kim, J. Ramousse, G. Fraisse, P. Dalicieux, and P. Baranek, Energy Build. 70, 106 (2014).

    Article  Google Scholar 

  16. Q. Luo, G. Tang, Z. Liu, and J. Wang, Appl. Therm. Eng. 25, 2193 (2005).

    Article  Google Scholar 

  17. Z. Sahin and B.S. Yilbas, Energy Convers. Manag. 65, 26 (2013).

    Article  Google Scholar 

  18. H. Ali, A.Z. Sahin, and B.S. Yilbas, Energy Convers. Manag. 78, 634 (2014).

    Article  Google Scholar 

  19. Z.-G. Shen, S.-Y. Wu, and L. Xiao, Energy Convers. Manag. 89, 244 (2015).

    Article  Google Scholar 

  20. J.W. Sharp and J.L. Bierschenk, Multistage heat pumps and method of manufacture, U.S. Patent 7763792 (27 July 2010). Accessed 5 June 2015.

  21. M. Cvahte and J. Strnad, Eur. J. Phys. 9, 11 (1988).

    Article  Google Scholar 

  22. R. Nuwayhid, F. Moukalled, and N. Noueihed, Energy Convers. Manag. 41, 891 (2000).

    Article  Google Scholar 

  23. X. Wang, J. Yu, and M. Ma, Int. J. Heat Mass Transf. 63, 361 (2013).

    Article  Google Scholar 

  24. S. Sharma, V. Dwivedi, and S. Pandit, Int. J. Energy Res. 38, 213 (2013).

    Article  Google Scholar 

  25. W. Tipsaenporm, M. Rungsiyopas, and C. Lertsatitthanakorn, J. Electron. Mater. 43, 1804 (2013).

    Article  Google Scholar 

  26. S. Kaushik, S. Manikandan, and R. Hans, Int. J. Heat Mass Transf. 86, 843 (2015).

    Article  Google Scholar 

  27. S. Kaushik and S. Manikandan, Energy Convers. Manag. 103, 200 (2015).

    Article  Google Scholar 

  28. S. Manikandan and S. Kaushik, Energy Convers. Manag. 106, 804 (2015).

    Article  Google Scholar 

  29. İ. Dinçer and M. Rosen, Exergy: Energy, Environment, and Sustainable Development (Amsterdam: Elsevier, 2007).

    Google Scholar 

  30. J. Szargut, Exergy Method: Technical and Ecological Applications (Southampton: WIT Press, 2005).

    Google Scholar 

  31. S. Kaushik, V.S. Reddy, and S. Tyagi, Renew. Sustain. Energy Rev. 15, 1857 (2011).

    Article  Google Scholar 

  32. A. Bejan, Advanced Engineering Thermodynamics (Chichester: Wiley, 1997), pp. 5–7.

    Google Scholar 

  33. L. Chen, F. Meng, and F. Sun, Cryogenics 52, 58 (2012).

    Article  Google Scholar 

  34. X. Xuan, K. Ng, C. Yap, and H. Chua, Cryogenics 42, 273 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manikandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, S.C., Manikandan, S. & Hans, R. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump. J. Electron. Mater. 45, 3400–3409 (2016). https://doi.org/10.1007/s11664-016-4465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4465-x

Keywords

Navigation