Journal of Electronic Materials

, Volume 45, Issue 8, pp 3921–3928 | Cite as

Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC

  • A. A. Solovyev
  • A. V. Shipilova
  • I. V. Ionov
  • A. N. Kovalchuk
  • S. V. Rabotkin
  • V. O. Oskirko


Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm−2 and 500 mW cm−2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm−2 at 800°C and 1 W cm−2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.


Solid oxide fuel cell CGO YSZ bilayer electrolyte magnetron sputtering pulse electron-beam treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the Russian Foundation for Basic Research (Grant No. 14-29-04089) for financial support. Part of this work was funded by subsidies in the framework of the program to improve the competitiveness of TPU and Project VIU_NU_№187. Part of this work was carried out within the State assignment of the Institute of High Current Electronics SB RAS.


  1. 1.
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, and J. Santamaria, Science 321, 676 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Wu, Ch.G. Wu, and C. Yi-Bin, J. Electron. Mater. 21, 217 (1992)CrossRefGoogle Scholar
  3. 3.
    L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, and Y. Takeda, Solid State Ion. 158, 55 (2003)CrossRefGoogle Scholar
  4. 4.
    D. Marinha, J. Hayd, L. Dessemond, E. Ivers-Tiffée, and E. Djurado, J. Power Sources 196, 5084 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Shen, V.A.B. Almeida, and F. Gitzhofer, J. Therm. Spray Technol. 20, 145 (2011)CrossRefGoogle Scholar
  6. 6.
    D.W. Ni and V. Esposito, J. Power Sources 266, 393 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Sønderby, T. Klemensø, B.H. Christensen, K.P. Almtoft, J. Lu, L.P. Nielsen, and P. Eklund, J. Power Sources 267, 452 (2014)CrossRefGoogle Scholar
  8. 8.
    N. Jordan, W. Assenmacher, S. Uhlenbruck, V.A.C. Haanappel, H.P. Buchkremer, D. Stöver, and W. Mader, Solid State Ion. 179, 919 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Wang, Y. Chen, L. Zhang, C. Ren, F. Chen, and K.S. Brinkman, J. Electron. Mater. 44, 4898 (2015)CrossRefGoogle Scholar
  10. 10.
    V.V. Kharton, F.M.B. Marques, and A. Atkinson, Solid State Ion. 174, 135 (2004)CrossRefGoogle Scholar
  11. 11.
    Y.L. Kuo, Y.S. Chen, and C. Lee, J. Eur. Ceram. Soc. 31, 3127 (2011)CrossRefGoogle Scholar
  12. 12.
    G. Laukaitis and J. Dudonis, J. Alloys Compd. 459, 320 (2008)CrossRefGoogle Scholar
  13. 13.
    N. Pryds, K. Rodrigo, S. Linderoth, and J. Schou, Appl. Surf. Sci. 255, 5232 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Uhlenbruck, T. Moskalewicz, N. Jordan, H.-J. Penkalla, and H.P. Buchkremer, Solid State Ion. 180, 418 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Uhlenbruck, N. Jordan, D. Sebold, H.P. Buchkremer, V.A.C. Haanappel, and D. Stöver, Thin Solid Films 515, 4053 (2007)CrossRefGoogle Scholar
  16. 16.
    W. Wu, Z. Liu, Z. Zhao, X. Zhang, D. Ou, B. Tu, D. Cui, and M. Cheng, Chin. J. Catal. 35, 1376 (2014)CrossRefGoogle Scholar
  17. 17.
    A.A. Solovyev, N.S. Sochugov, S.V. Rabotkin, A.V. Shipilova, I.V. Ionov, A.N. Kovalchuk, and A.O. Borduleva, Appl. Surf. Sci. 310, 272 (2014)CrossRefGoogle Scholar
  18. 18.
    N.S. Sochugov, A.A. Soloviev, A.V. Shipilova, and V.P. Rotshtein, Int. J. Hydrog. Energy 36, 5550 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Musil, J. Leština, J. Vlček, and T. Tölg, J. Vac. Sci. Technol. A 19, 420 (2001)CrossRefGoogle Scholar
  20. 20.
    J. Sellers, Surf. Coat. Technol. 98, 1245 (1998)CrossRefGoogle Scholar
  21. 21.
    P.J. Kelly, P.S. Henderson, R.D. Arnell, G.A. Roche, and D. Carter, J. Vac. Sci. Technol. A 18, 2890 (2000)CrossRefGoogle Scholar
  22. 22.
    P. Coddet, M.-C. Pera, and A. Billard, Fuel Cells 11, 158 (2011)CrossRefGoogle Scholar
  23. 23.
    F.C. Fonseca, S. Uhlenbruck, R. Nedéléc, and H.P. Buchkremer, J. Power Sources 195, 1599 (2010)CrossRefGoogle Scholar
  24. 24.
    S. Heiroth, R. Frison, J.L.M. Rupp, T. Lippert, E.J.B. Meier, E.M. Gubler, M. Dobeli, K. Conder, A. Wokaun, and L.J. Gauckler, Solid State Ion. 191, 12 (2011)CrossRefGoogle Scholar
  25. 25.
    M.D. McIntyre, M. Lund Traulsen, K. Norrman, S. Sanna, and R.A. Walker, ECS Trans. 66, 47 (2015)CrossRefGoogle Scholar
  26. 26.
    J.R. McBride, K.C. Hass, B.D. Poindexter, and W.H. Weber, J. Appl. Phys. 76, 2435 (1994)CrossRefGoogle Scholar
  27. 27.
    H. Choi, G.Y. Cho, and S.W. Cha, Int. J. Precis. Eng. Manuf.-Green Technol. 1, 95 (2014)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • A. A. Solovyev
    • 1
  • A. V. Shipilova
    • 1
  • I. V. Ionov
    • 2
  • A. N. Kovalchuk
    • 1
  • S. V. Rabotkin
    • 2
  • V. O. Oskirko
    • 2
  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations