Skip to main content
Log in

Tunneling Anisotropic Magnetoresistance in Fe Nanoparticles Embedded in MgO Matrix

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The tunnel magnetoresistance (TMR) effect is related to the relative orientation of the magnetizations of the two ferromagnetic electrodes in magnetic tunnel junctions (MTJs). The tunnel anisotropic magnetoresistance (TAMR) effect is related to the orientation of the magnetization with respect to the current direction or the crystallographic axes. Beyond the TMR, the TAMR is not only present in MTJs in which both electrodes are ferromagnetic but may also appear in tunnel structures with a single magnetic electrode. We investigated the magnetotransport properties in an Au/MgO/Fe nanoparticles/MgO/Cu tunnel junction. We found that both the TMR and TAMR can appear in tunnel junctions with Fe nanoparticles embedded in an MgO matrix. The TMR is attributed to spin-dependent tunneling between Fe nanoparticles, so the device resistance depends on the magnetization directions of adjacent Fe nanoparticles. The TAMR is attributed to the interfacial spin–orbit interaction, so the device resistance depends on each magnetization direction of an Fe nanoparticle. This is the first observation of the TAMR in Fe nanoparticles embedded in an MgO matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).

    Article  Google Scholar 

  2. J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).

    Article  Google Scholar 

  3. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).

    Article  Google Scholar 

  4. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, and S.H. Yang, Nat. Mater. 3, 862 (2004).

    Article  Google Scholar 

  5. D.D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).

    Article  Google Scholar 

  6. B. Prasad, W. Zhang, J. Jian, H. Wang, and M.G. Blamire, Adv. Mater. 27, 3079 (2015).

    Article  Google Scholar 

  7. S. Ikeda, J. Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno, IEEE Trans. Electron Devices 54, 991 (2007).

    Article  Google Scholar 

  8. J.Y. Chen, J.F. Feng, and J.M.D. Coey, Appl. Phys. Lett. 100, 142407 (2012).

    Article  Google Scholar 

  9. P. Wisniowski, M. Dabek, S. Cardosob, and P.P. Freitas, Sens. Actuators A 202, 64 (2013).

    Article  Google Scholar 

  10. C. Gould, C. Ruster, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt, and L.W. Molenkamp, Phys. Rev. Lett. 93, 117203 (2004).

    Article  Google Scholar 

  11. D. Giddings, M.N. Khalid, T. Jungwirth, J. Wunderlich, S. Yasin, R.P. Campion, K.W. Edmonds, J. Sinova, K. Ito, K. Wang, K.Y. Wang, D. Williams, B.L. Gallagher, and C.T. Foxon, Phys. Rev. Lett. 94, 127202 (2005).

    Article  Google Scholar 

  12. L. Gao, X. Jiang, S.H. Yang, J.D. Burton, E.Y. Tsymbal, and S.S.P. Parkin, Phys. Rev. Lett. 99, 226602 (2007).

    Article  Google Scholar 

  13. B.G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A.B. Shick, and T. Jungwirth, Nat. Mater. 10, 347 (2011).

    Article  Google Scholar 

  14. S. Hatanaka, S. Miwa, K. Matsuda, K. Nawaoka, K. Tanaka, H. Morishita, M. Goto, N. Mizuochi, T. Shinjo, and Y. Suzuki, Appl. Phys. Lett. 107, 082407 (2015).

    Article  Google Scholar 

  15. T. Nozaki, N. Tezuka, and K. Inomata, Phys. Rev. Lett. 96, 027208 (2006).

    Article  Google Scholar 

  16. S. Miwa, S.-Y. Park, S.-I. Kim, Y. Jo, N. Mizuochi, T. Shinjo, and Y. Suzuki, Appl. Phys. Express 5, 123001 (2012).

    Article  Google Scholar 

  17. T.V. Pham, S. Miwa, D. Bang, T. Nozaki, F. Bonell, E. Tamura, N. Mizuochi, T. Shinjo, and Y. Suzuki, Solid State Commun. 183, 18 (2014).

    Article  Google Scholar 

  18. H. Sukegawa, S. Nakamura, A. Hirohata, N. Tezuka, and K. Inomata, Phys. Rev. Lett. 94, 068304 (2005).

    Article  Google Scholar 

  19. K.J. Dempsey, A.T. Hindmarch, H.-X. Wei, Q.-H. Qin, Z.-C. Wen, W.-X. Wang, G. Vallejo-Fernandez, D.A. Arena, X.-F. Han, and C.H. Marrows, Phys. Rev. B 82, 214415 (2010).

    Article  Google Scholar 

  20. E.Y. Tsymbal and D.G. Pettifor, J. Phys. 9, L411 (1997).

    Google Scholar 

  21. C. Kaiser, S. van Dijken, S.-H. Yang, H. Yang, and S. S.P. Parkin. Phys. Rev. Lett. 94, 247203 (2005).

    Article  Google Scholar 

  22. W.H. Butler, X.-G. Zhang, T.C. Schulthess, and J.M. MacLaren, Phys. Rev. B 63, 054416 (2001).

    Article  Google Scholar 

  23. J. Moser, A. Matos-Abiague, D. Schuh, W. Wegscheider, J. Fabian, and D. Weiss, Phys. Rev. Lett. 99, 056601 (2007).

    Article  Google Scholar 

  24. B.G. Park, J. Wunderlich, D.A. Lilliams, S.J. Joo, K.Y. Jung, K.H. Shin, K. Olejnik, A.B. Shick, and T. Jungwirth, Phys. Rev. Lett. 100, 087204 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Pham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.V., Miwa, S. & Suzuki, Y. Tunneling Anisotropic Magnetoresistance in Fe Nanoparticles Embedded in MgO Matrix. J. Electron. Mater. 45, 2597–2600 (2016). https://doi.org/10.1007/s11664-016-4428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4428-2

Keywords

Navigation