Skip to main content

Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles

Abstract

In this work, we have developed a convenient approach to synthesize magnetic nanoparticles with relatively high magnetization and controllable sizes. This was realized by combining the traditional co-precipitation method and microfluidic techniques inside microfluidic devices. The device was first designed, and then fabricated using simplified soft-lithography techniques. The device was utilized to synthesize magnetite nanoparticles. The synthesized nanomaterials were thoroughly characterized using field emission scanning electron microscopy and a vibrating sample magnetometer. The results demonstrated that the as-prepared device can be utilized as a simple and effective tool to synthesize magnetic nanoparticles with the sizes less than 10 nm and magnetization more than 50 emu/g. The development of these devices opens new strategies to synthesize nanomaterials with more precise dimensions at narrow size-distribution and with controllable behaviors.

This is a preview of subscription content, access via your institution.

References

  1. T.-H. Shin, Y. Choi, S. Kima, and J. Cheon, Chem. Soc. Rev. 44, 4501 (2015).

    Article  Google Scholar 

  2. L.D. Tran, N.M.T. Hoang, T.T. Mai, H.V. Tran, N.T. Nguyen, T.D. Tran, M.H. Do, Q.T. Nguyen, D.G. Pham, T.P. Ha, H.V. Le, and P.X. Nguyen, Colloid. Surf. A 371, 104 (2010).

    Article  Google Scholar 

  3. A.E. Deatsch and B.A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).

    Article  Google Scholar 

  4. N.N. Thinh, P.T.B. Hanh, T.V. Hoang, V.D. Hoang, L.H. Dang, N.V. Khoi, and T.D. Lam, Mater. Sci. Eng. C 33, 1214 (2013).

    Article  Google Scholar 

  5. S. Gil and J.F. Mano, Biomater. Sci. 2, 812 (2014).

    Article  Google Scholar 

  6. M.C. Mascolo, Y. Pei, and A. Terry, Materials 6, 5549 (2013).

    Article  Google Scholar 

  7. J.S. Basuki, A. Jacquemin, L. Esser, Y. Li, C. Boyer, and T.P. Davis, Polym. Chem. 5, 2611 (2014).

    Article  Google Scholar 

  8. S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang, and A.A. Volinsky, Mater. Lett. 65, 1882 (2011).

    Article  Google Scholar 

  9. S. Sun and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).

    Article  Google Scholar 

  10. K. Woo, J. Hong, S. Choi, H.-W. Lee, J.-P. Ahn, C.S. Kim, and S.W. Lee, Chem. Mater. 16, 2814 (2004).

    Article  Google Scholar 

  11. M.G.- Weimuller, M. Zeisberger, and K.M. Krishnan, J. Magn. Magn. Mater. 321, 1947 (2009).

    Article  Google Scholar 

  12. W.-W. Wang, Y.-J. Zhu, and M.-L. Ruan, J. Nanopart. Res. 9, 419 (2007).

    Article  Google Scholar 

  13. N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, and H. Tang, Ultrason. Sonochem. 17, 526 (2010).

    Article  Google Scholar 

  14. J. Zhang, M. Post, T. Veres, Z.J. Jakubek, J. Guan, D. Wang, F. Normandin, Y. Deslandes, and B. Simard, J. Phys. Chem. B 110, 7122 (2006).

    Article  Google Scholar 

  15. S. Marre and K.F. Jensen, Chem. Soc. Rev. 39, 1183 (2010).

    Article  Google Scholar 

  16. E.M. Chan, A.P. Alivisatos, and R.A. Mathies, J. Am. Chem. Soc. 127, 13854 (2005).

    Article  Google Scholar 

  17. V.S. Cabeza, S. Kuhn, A.A. Kulkarni, and K.F. Jensen, Langmuir 28, 7007 (2012).

    Article  Google Scholar 

  18. J. Puigmartí-Luis, M. Rubio-Martínez, U. Hartfelder, I. Imaz, D. Maspoch, and P.S. Dittrich, J. Am. Chem. Soc. 133, 4216 (2011).

    Article  Google Scholar 

  19. M. Faustini, J. Kim, G.-Y. Jeong, J.Y. Kim, H.R. Moon, W.-S. Ahn, and D.-P. Kim, J. Am. Chem. Soc. 135, 14619 (2013).

    Article  Google Scholar 

  20. L. Frenz, A.E. Harrak, M. Pauly, S. Begin-Colin, A.D. Griffiths, and J.-C. Baret, Int. Ed. Angew. Chem. 47, 6817 (2008).

    Article  Google Scholar 

  21. W.B. Lee, C.H. Weng, F.Y. Cheng, C.S. Yeh, H.Y. Lei, and G.B. Lee, Biomed. Microdevices 11, 161 (2009).

    Article  Google Scholar 

  22. D. Qin, Y. Xia, and G.M. Whitesides, Nat. Protoc. 5, 491 (2010).

    Article  Google Scholar 

  23. J. Zhou, A.V. Ellis, and N.H. Voelcker, Electrophoresis 31, 2 (2010).

    Article  Google Scholar 

  24. G.M. Whitesides, Nature 442, 368 (2006).

    Article  Google Scholar 

  25. L.L. Balcells, J. Fontcuberta, B. Martinez, and X. Obradors, Cond. Matt. 10, 1883 (1998).

    Article  Google Scholar 

  26. B. Mehdaoui, A. Meffre, J. Carrey, S. Lachaize, L.-M. Lacroix, M. Gougeon, B. Chaudret, and M. Respaud, Adv. Func. Mater. 21, 4573 (2011).

    Article  Google Scholar 

  27. T.T. Luong, T.P. Ha, L.D. Tran, M.H. Do, T.T. Mai, N.H. Pham, H.B.T. Phan, G.H.T. Pham, N.M.T. Hoang, Q.T. Nguyen, and P.X. Nguyen, Colloid. Surf. A 384, 23 (2011).

    Article  Google Scholar 

  28. T.K.O. Vuong, D.L. Tran, T.L. Le, D.V. Pham, H.N. Pham, T.H.L. Ngo, H.M. Do, and X.P. Nguyen, Mater. Chem. Phys. 163, 1 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work received financial support from the Vietnam Academy of Science and Technology (VAST 03.01/15-16) and National Foundation for Science and Technology Development (NAFOSTED, 104.04-2014.36). This work was partly funded by University of Science and Technology of Ha Noi (Nano 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Dai Lam.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thu, V.T., Mai, A.N., Le The Tam et al. Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles. J. Electron. Mater. 45, 2576–2581 (2016). https://doi.org/10.1007/s11664-016-4424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4424-6

Keywords

  • Microfluidic
  • microreactor
  • magnetic nanoparticles
  • co-precipitation