Journal of Electronic Materials

, Volume 45, Issue 5, pp 2563–2568 | Cite as

Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

  • Luu Manh Quynh
  • Nguyen Hoang NamEmail author
  • K. Kong
  • Nguyen Thi Nhung
  • I. Notingher
  • M. Henini
  • Nguyen Hoang Luong


The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm−1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm−1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.


Skin cancer basal cell carcinoma surface-enhanced Raman scattering gold nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Baxter, A.N. Patel, and S. Varma, BMJ 345, e5342 (2012).CrossRefGoogle Scholar
  2. 2.
    National Cancer Intelligence Network (NCIN), Non-melanoma Skin Cancer in England, Scotland, Northern Ireland, and Ireland (London: NCIN, 2013).Google Scholar
  3. 3.
    S.V. Mohan and A.L.S. Chang, Curr. Dermatol. Rep. 3, 40 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Gniadecka, H.C. Wulf, O.F. Nielsen, D.H. Christensen, and J. Hercogova, Photochem. Photobiol. 66, 418 (1997).CrossRefGoogle Scholar
  5. 5.
    A. Nijssen, T.C. Bakker Schut, F. Heule, P.J. Caspers, D.P. Hayes, M.H.A. Neumann, and G.J. Puppels, J. Investig. Dermatol. 119, 64 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I.H. Leach, A.A. Koloydenko, H. Williams, H. Williams, and I. Notingher, J. Biomed. Opt. 14, 054031 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Kong, C.J. Rowlands, S. Varma, W. Perkins, I.H. Leach, A.A. Koloydenko, H.C. Williams, and I. Notingher, Proc. Natl. Acad. Sci. USA 110, 15189 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Takamori, K. Kong, S. Varma, I. Leach, H.C. Williams, and I. Notingher, Biomed. Opt. Express 6, 98 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Fleischmann, P.J. Hendra, and A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).CrossRefGoogle Scholar
  10. 10.
    T. Vo-Dinh, L.R. Allain, and D.L. Stokes, J. Raman Spectrosc. 33, 511 (2002).CrossRefGoogle Scholar
  11. 11.
    P.M. Kasili, M.B. Wabuyele, and T. Vo-Dinh, NanoBiotechnology 2, 29 (2006).CrossRefGoogle Scholar
  12. 12.
    L.R. Allain and T. Vo-Dinh, Analyt. Chim. Acta 469, 149 (2002).CrossRefGoogle Scholar
  13. 13.
    N.J. Kim, J. Phys. Chem. C 114, 13979 (2010).CrossRefGoogle Scholar
  14. 14.
    S. Ye, L. Fang, and Y. Lu, J. Raman Spectrosc. 41, 1119 (2010).CrossRefGoogle Scholar
  15. 15.
    J. Zheng, Y. Zhou, X. Li, Y. Ji, T. Lu, and R. Gu, Langmuir 19, 632 (2003).CrossRefGoogle Scholar
  16. 16.
    Y.C. Liu, Langmuir 18, 174 (2002).CrossRefGoogle Scholar
  17. 17.
    C.M. Stellman, K.S. Booksh, A.R. Muroski, M.P. Nelson, and M.L. Myrick, Sci. Eng. Comp. Mater. 7, 51 (1998).Google Scholar
  18. 18.
    N.N. Long, L.V. Vu, C.D. Kiem, S.C. Doanh, C.T. Nguyet, P.T. Hang, N.D. Thien, and L.M. Quynh, J. Phys. 187, 012026 (2009).Google Scholar
  19. 19.
    X. Huang, I.H. El-Sayed, and M.A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006).CrossRefGoogle Scholar
  20. 20.
    H.Y. Jung, Y.K. Park, S. Park, and S.K. Kim, Anal. Chim. Acta 602, 236 (2007).CrossRefGoogle Scholar
  21. 21.
    E.C. Le Ru, E. Blackie, M. Meyer, and P.G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).CrossRefGoogle Scholar
  22. 22.
    M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, J. Phys. Chem. 98, 12702 (1994).CrossRefGoogle Scholar
  23. 23.
    L.S. Jiao, L. Niu, J. Shen, T. You, S. Dong, and A. Ivaska, Electrochem. Commun. 7, 219 (2005).CrossRefGoogle Scholar
  24. 24.
    N.C. Maiti, M.M. Apetri, M.G. Zagorski, P.R. Carey, and V.E. Anderson, J. Am. Chem. Soc. 126, 2399 (2004).CrossRefGoogle Scholar
  25. 25.
    P. Owens, N. Phillipson, J. Perumal, G.M. O’Connor, and M. Olivo, Biosensors 5, 664 (2015).CrossRefGoogle Scholar
  26. 26.
    L.S. Jiao, Z. Wang, L. Niu, J. Shen, T. You, S. Dong, and A. Ivaska, J. Solid State Electrochem. 10, 886 (2006).CrossRefGoogle Scholar
  27. 27.
    T.M. Herne, A.M. Ahern, and R.L. Garrell, Anal. Chim. Acta 246, 75 (1991).CrossRefGoogle Scholar
  28. 28.
    A. Nijssen, T.C. Bakker Schut, F. Heule, P.J. Caspers, D.P. Hayes, M.H.A. Neumann, and G.J. Puppels, J. Invest. Dermatol. 119, 64 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Luu Manh Quynh
    • 1
  • Nguyen Hoang Nam
    • 1
    • 2
    Email author
  • K. Kong
    • 3
  • Nguyen Thi Nhung
    • 1
  • I. Notingher
    • 3
  • M. Henini
    • 3
  • Nguyen Hoang Luong
    • 2
  1. 1.Faculty of Physics, Hanoi University of ScienceVietnam National University, HanoiHanoiVietnam
  2. 2.Nano and Energy Center, Hanoi University of ScienceVietnam National University, HanoiHanoiVietnam
  3. 3.School of Physics and AstronomyNottingham UniversityNottinghamUK

Personalised recommendations