Skip to main content
Log in

Symmetry-Breaking Metamaterials Enabling Broadband Negative Permeability

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Looking for a metamaterial, which can operate over a broad frequency band, has been indispensable towards promising applications. In this report, we propose a simple approach, allowing enlargement of the negative permeability band by breaking the structural symmetry in conventional cut-wire-pair metamaterials. Equivalent LC circuit and finite integration simulations are performed to explain underlying physics of the band expansion. Microwave samples are also prepared and measured to verify the proposed idea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Shalaev, Nat. Photonics 1, 41 (2007)

    Article  Google Scholar 

  2. N. Engheta and R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (New York: Wiley, 2006)

    Book  Google Scholar 

  3. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  Google Scholar 

  4. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  Google Scholar 

  5. S. Zhang, D.A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    Article  Google Scholar 

  6. J.B. Pendry, D. Schurig, and D.R. Smith, Science 312, 1780 (2006)

    Article  Google Scholar 

  7. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  8. H.J. Lee and J.G. Yook, Appl. Phys. Lett. 92, 254103 (2008)

    Article  Google Scholar 

  9. N. Engheta, IEEE Antennas Wirel. Propag. Lett. 1, 10 (2002)

    Article  Google Scholar 

  10. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, and D.R. Smith, Science 314, 977 (2006)

    Article  Google Scholar 

  11. D.H. Kwon, D.H. Werner, A.V. Kildishev, and V.M. Shalaev, Opt. Express 15, 1647 (2007)

    Article  Google Scholar 

  12. Z. Wei, Y. Cao, J. Han, C. Wu, Y. Fan, and H. Li, Appl. Phys. Lett. 97, 141901 (2010)

    Article  Google Scholar 

  13. C. Hu, L. Liu, X.N. Chen, and X.G. Luo, Opt. Express 16, 21544 (2008)

    Article  Google Scholar 

  14. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, Appl. Phys. Lett. 100, 103506 (2012)

    Article  Google Scholar 

  15. Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N.X. Fang, Nano Lett. 12, 1443 (2012)

    Article  Google Scholar 

  16. E. Prodan, C. Radloff, N.J. Halas, and P.A. Nordlander, Science 302, 419 (2003)

    Article  Google Scholar 

  17. A. Christ, O.J.F. Martin, Y. Ekinci, N.A. Gippius, and S.G. Tikhodeev, Nano Lett. 8, 2171 (2008)

    Article  Google Scholar 

  18. B. Kante, S.N. Burokur, A. Sellier, A.D. Lustrac, and J.M. Lourtioz, Phys. Rev. B 79, 075121 (2009)

    Article  Google Scholar 

  19. N.T. Tung, D.T. Viet, B.S. Tung, N.V. Hieu, P. Lievens, and V.D. Lam, Appl. Phys. Express 5, 112001 (2012)

    Article  Google Scholar 

  20. N.T. Tung, B.S. Tung, P. Lievens, E. Janssens, and V.D. Lam, J. Appl. Phys. 116, 083104 (2014)

    Article  Google Scholar 

  21. V.M. Shalaev, W. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, and A.V. Kildishev, Opt. Lett. 30, 3356 (2005)

    Article  Google Scholar 

  22. V.D. Lam, N.T. Tung, M.H. Cho, J.W. Park, J.Y. Rhee, and Y.P. Lee, J. Appl. Phys. 105, 113102 (2009)

    Article  Google Scholar 

  23. J. Zhou, Th Koschny, M. Kafesaki, E.N. Economou, J.B. Pendry, and C.M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005)

    Article  Google Scholar 

  24. N.T. Hien, L.N. Le, P.T. Trang, B.S. Tung, N.D. Viet, P.T. Duyen, N.M. Thang, D.T. Viet, Y.P. Lee, V.D. Lam, and N.T. Tung, Comput. Mater. Sci. 103, 189 (2015)

    Article  Google Scholar 

  25. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T.H. Hand, W.J. Padilla, N.M. Jokerst, and S.A. Cummer, Appl. Phys. Lett. 93, 191110 (2008)

    Article  Google Scholar 

  26. CST Microwave Studio. http://www.cst.com Accessed 19 June 2015.

  27. X. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco, and J.A. Kong, Phys. Rev. E 70, 016608 (2004)

    Article  Google Scholar 

  28. N.T. Tung, T.X. Hoai, V.D. Lam, J.W. Park, V.T. Thuy, and Y.P. Lee, Eur. Phys. J. B 74, 47 (2010)

    Article  Google Scholar 

  29. Z.G. Dong, M.X. Xu, H. Liu, T. Li, and S.N. Zhu, J. Appl. Phys. 105, 034907 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Foundation for Science and Technology Development (Grant No. NAFOSTED 103.02-2014.67) and the Vietnam Academy of Science and Technology (Grant No. VAST 03.02/15-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Tung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trang, P.T., Nguyen, B.H., Tiep, D.H. et al. Symmetry-Breaking Metamaterials Enabling Broadband Negative Permeability. J. Electron. Mater. 45, 2547–2552 (2016). https://doi.org/10.1007/s11664-016-4410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4410-z

Keywords

Navigation