Advertisement

Journal of Electronic Materials

, Volume 45, Issue 4, pp 2051–2058 | Cite as

Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing

  • Aboozar MoslehEmail author
  • Murtadha Alher
  • Larry C. Cousar
  • Wei Du
  • Seyed Amir Ghetmiri
  • Sattar Al-Kabi
  • Wei Dou
  • Perry C. Grant
  • Greg Sun
  • Richard A. Soref
  • Baohua Li
  • Hameed A. Naseem
  • Shui-Qing Yu
Article

Abstract

Buffer-free GeSn and SiGeSn films have been deposited on Si via a cold-wall, ultra-high vacuum chemical vapor deposition reactor using in situ gas mixing of deuterated stannane, silane and germane. Material characterization of the films using x-ray diffraction and transmission electron microscopy shows crystalline growth with an array of misfit dislocation formed at the Si substrate interface. Energy dispersive x-ray maps attained from the samples show uniform incorporation of the elements. The Z-contrast map of the high-angle annular dark-field of the film cross section shows uniform incorporation along the growth as well. Optical characterization of the GeSn films through photoluminescence technique shows reduction in the bandgap edge of the materials.

Keywords

Chemical vapor deposition Si photonics GeSn alloy SiGeSn alloy photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The work at the UA was supported by NSF (EPS-1003970), the Arkansas Bioscience Institute, the Arktonics, LLC (Air Force SBIR, FA9550-14-C-0044, Dr. Gernot Pomrenke, Program Manager) and DARPA (W911NF-13-1-0196, Dr. Jay Lewis, Program Manager). Drs. R.A. Soref and G. Sun acknowledge support from AFOSR (FA9550-14-1-0196, Dr. Gernot Pomrenke, Program Manager). The authors would also like to thank Institute for Nano Science and Engineering at the University of Arkansas for material characterization.

References

  1. 1.
    M.E. Groenert, C.W. Leitz, A.J. Pitera, V. Yang, H. Lee, R.J. Ram, and E.A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).CrossRefGoogle Scholar
  2. 2.
    R.E. Camacho-Aguilera, Y. Cai, N. Patel, J.T. Bessette, M. Romagnoli, L.C. Kimerling, and J. Michel, Opt. Express 20, 11316 (2012).CrossRefGoogle Scholar
  3. 3.
    S.A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B.R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R.A. Soref, et al., Appl. Phys. Lett. 105, 151109 (2014).CrossRefGoogle Scholar
  4. 4.
    S. Al-Kabi, S.A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, M. Alher, W. Dou, J.M. Grant, G. Sun, R.A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, J Electron Mater. 1, 1 (2015). doi: 10.1007/s11664-015-4283-6
  5. 5.
    T. Pham, B. Conley, J. Margetis, H. Tran, S.A. Ghetmiri, A. Mosleh, W. Du, G. Sun, G. Sun, R. Soref, and J. Tolle, CLEO 7, STh1I (2015).Google Scholar
  6. 6.
    B.R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S.A. Ghetmiri, J. Tolle, G. Sun, R. Soref, and B. Li, Appl. Phys. Lett. 105, 221117 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, and J. Hartmann, Nat. Photonics 9, 88 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, and J. Hartmann, Thin Solid Films 557, 183 (2014).CrossRefGoogle Scholar
  9. 9.
    J. Kouvetakis, J. Menendez, and A. Chizmeshya, Annu. Rev. Mater. Res. 36, 497 (2006).CrossRefGoogle Scholar
  10. 10.
    A. Mosleh, M. Benamara, S.A. Ghetmiri, B.R. Conley, M.A. Alher, W. Du, G. Sun, R. Soref, J. Margetis, and J. Tolle, ECS Trans. 64, 895 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Tolle, R. Roucka, A.V. Chizmeshya, J. Kouvetakis, V.R. D’Costa, and J. Menéndez, Appl. Phys. Lett. 88, 2112 (2006).CrossRefGoogle Scholar
  12. 12.
    A. Harwit, P. Pukite, J. Angilello, and S. Iyer, Thin Solid Films 184, 395 (1990).CrossRefGoogle Scholar
  13. 13.
    J. Kouvetakis, J. Mathews, R. Roucka, A.V.G. Chizmeshya, J. Tolle, and J. Menendez, IEEE Photonics J. 2, 924 (2010).CrossRefGoogle Scholar
  14. 14.
    J. Tolle, A. Chizmeshya, Y. Fang, J. Kouvetakis, V. D’Costa, C. Hu, J. Menendez, and I. Tsong, Appl. Phys. Lett. 89, 231924 (2006).CrossRefGoogle Scholar
  15. 15.
    J. Tolle, U.S. Patent Application No. 13/966,782 (2013).Google Scholar
  16. 16.
    J. Margetis, S.A. Ghetmiri, W. Du, B.R. Conley, A. Mosleh, R. Soref, G. Sun, L. Domulevicz, H.A. Naseem, and S. Yu, ECS Trans. 64, 711–720 (2014).CrossRefGoogle Scholar
  17. 17.
    A. Mosleh, S.A. Ghetmiri, B.R. Conley, M. Hawkridge, M. Benamara, A. Nazzal, J. Tolle, S. Yu, and H.A. Naseem, J. Electron. Mater. 43, 938 (2014).CrossRefGoogle Scholar
  18. 18.
    A. Mosleh, M.A. Alher, L.C. Cousar, W. Du, S.A. Ghetmiri, T. Pham, J.M. Grant, G. Sun, R.A. Soref, and B. Li, Front. Mater. 2, 30 (2015).CrossRefGoogle Scholar
  19. 19.
    A. Mosleh, M. Alher, W. Du, L.C. Cousar, S.A. Ghetmiri, S. Al-Kabi, W. Dou, P.C. Grant, G. Sun, and R.A. Soref, J. Vac. Sci. Technol., B 34, 011201 (2016).CrossRefGoogle Scholar
  20. 20.
    Y.J. Cho, C.H. Kim, H.S. Im, Y. Myung, H.S. Kim, S.H. Back, Y.R. Lim, C.S. Jung, D.M. Jang, J. Park, S. H. Lim, E.H. Cha, K.Y. Bae, M.S. Song, and W.I. Cho, Phys. Chem. Chem. Phys. 15, 11691 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Jiang, C. Xu, J.D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, Chem. Mater. 26, 2522 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Kouvetakis and A.V.G. Chizmeshya, J. Mater. Chem. 17, 1649 (2007).CrossRefGoogle Scholar
  23. 23.
    H. Lin, R. Chen, W. Lu, Y. Huo, T.I. Kamins, and J.S. Harris, Appl. Phys. Lett. 100, 141908 (2012).CrossRefGoogle Scholar
  24. 24.
    M. Bauer, C. Ritter, P. Crozier, J. Ren, J. Menendez, G. Wolf, and J. Kouvetakis, Appl. Phys. Lett. 83, 2163 (2003).CrossRefGoogle Scholar
  25. 25.
    A. Mosleh, S.A. Ghetmiri, B.R. Conley, H. Abu-Safe, Z. Waqar, M. Benamara, S.-Q. Yu, H.A. Naseem, IEEE 39th Photovoltaic Specialists Conference (PVSC), p. 2646 (2013).Google Scholar
  26. 26.
    M.A. Alher, A. Mosleh, L. Cousar, W. Dou, P. Grant, S.A. Ghetmiri, S. Al-Kabi, W. Du, M. Benamara, and B. Li, ECS Trans. 69, 269 (2015).CrossRefGoogle Scholar
  27. 27.
    A. Mosleh, S.A. Ghetmiri, B.R. Conley, H.H. Abu-Safe, M. Benamara, Z. Waqar, S. El-Ghazaly, S. Yu, and H.A. Naseem, ECS Trans. 64, 967 (2014).CrossRefGoogle Scholar
  28. 28.
    R. Cheng, W. Wang, X. Gong, L. Sun, P. Guo, H. Hu, Z. Shen, G. Han, and Y. Yeo, ECS J. Solid State Sci. Technol. 2, P138 (2013).CrossRefGoogle Scholar
  29. 29.
    P. Moontragoon, R. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Aboozar Mosleh
    • 1
    • 2
    Email author
  • Murtadha Alher
    • 2
    • 3
  • Larry C. Cousar
    • 1
    • 4
  • Wei Du
    • 2
  • Seyed Amir Ghetmiri
    • 1
    • 2
  • Sattar Al-Kabi
    • 1
    • 2
    • 5
  • Wei Dou
    • 2
  • Perry C. Grant
    • 1
    • 2
  • Greg Sun
    • 6
  • Richard A. Soref
    • 6
  • Baohua Li
    • 4
  • Hameed A. Naseem
    • 2
  • Shui-Qing Yu
    • 2
  1. 1.Microelectronics-Photonics Graduate Program (μEP)University of ArkansasFayettevilleUSA
  2. 2.Department of Electrical EngineeringUniversity of ArkansasFayettevilleUSA
  3. 3.Department of Mechanical EngineeringUniversity of KerbalaKerbalaIraq
  4. 4.Arktonics, LLCFayettevilleUSA
  5. 5.Department of PhysicsWasit UniversityKutIraq
  6. 6.Department of EngineeringUniversity of Massachusetts BostonBostonUSA

Personalised recommendations