Skip to main content
Log in

Good Quality Factor in GdMnO3-Doped (K0.5Na0.5)NbO3 Piezoelectric Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(1 − x)(K0.5Na0.5)NbO3 − xGdMnO3 (KNN–xGM) ferroelectric ceramics (0 ≤ x ≤ 5 mol.%) were obtained through a solid state technique. For all the studied compositions, orthorhombic perovskite crystalline structures were obtained at room temperature. GdMnO3 suppresses the grain growth and gives rather homogenous microstructures as the concentration increases. The doped ceramics exhibita good dielectric response, a “hard” ferroelectric behavior and good piezoelectric properties. An improved mechanical quality factor of 1180 and a high Curie temperature T C = 400°C, coupled with k p = 0.426, makes the composition x = 1 mol.% GdMnO3 suitable for lead-free piezoelectric materials for high-power and high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wada, K. Muraoka, H. Kakemoto, T. Tsurumi, and H. Kumagai, Jpn. J. Appl. Phys. 43, 6692 (2004).

    Article  Google Scholar 

  2. E.A. Wood, Acta Crystallogr. 4, 353 (1951).

    Article  Google Scholar 

  3. L. Egerton and D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).

    Article  Google Scholar 

  4. R.E. Jaeger and L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962).

    Article  Google Scholar 

  5. EU-directive 2002/96/ec: waste electrical and electronic equipment (WEEE), Off. J. Eur. Union 46, 24 (2003).

  6. A. Jalalian and A.M. Grishin, Appl. Phys. Lett. 100, 012904 (2012).

    Article  Google Scholar 

  7. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, J. Am. Chem. Soc. 136, 2905 (2014).

    Article  Google Scholar 

  8. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  Google Scholar 

  9. D. Gao, K.W. Kwok, D. Lin, and H.L.W. Chan, J. Mater. Sci. 44, 2466 (2009).

    Article  Google Scholar 

  10. M. Peddigari, S. Thota, and D. Pamu, AIP Adv. 4, 087113 (2014).

    Article  Google Scholar 

  11. R. Pauthenet and C. Veyret, J. Physics (Paris) 31, 65 (1970).

    Article  Google Scholar 

  12. Y.R. Barcelay, J.A. Moreira, A. Almeida, J.P. Araujo, and J. Perez de la Cruz, Mater. Lett. 70, 167 (2012).

    Article  Google Scholar 

  13. S. Samantaray, D.K. Mishra, S.K. Pradhan, P. Mishra, B.R. Sekhar, D. Behera, P.P. Rout, S.K. Das, D.R. Sahu, and B.K. Roul, J. Magn. Magn. Mater. 339, 168 (2013).

    Article  Google Scholar 

  14. R. Rai, S. Sharma, R. Rani, M.A. Valente, and A.L. Kholkin, Mater. Lett. 65, 2703 (2011).

    Article  Google Scholar 

  15. R.A. Bucur, I. Badea, A.I. Bucur, and S. Novaconi, J. Alloy. Compd. 630, 43 (2015).

    Article  Google Scholar 

  16. C.W. Ahn, C.H. Choi, H.Y. Park, S. Nahm, and S. Priya, J. Mater. Sci. 43, 6784 (2008).

    Article  Google Scholar 

  17. M. Jiang, X. Li, J. Liu, J. Zhu, X. Zhu, L. Li, Q. Chen, J. Zhu, and D. Xiao, J. Alloy. Compd. 479, L18 (2009).

    Article  Google Scholar 

  18. S.H. Moon, J.H. Choi, K.W. Chae, J.S. Kim, and C. Cheon, Ceram. Int. 39, 2431 (2013).

    Article  Google Scholar 

  19. X. Sun, J. Chen, R. Yu, X. Xing, L. Qiao, and G. Liu, Sci. Technol. Adv. Mater. 9, 025004 (2008).

    Article  Google Scholar 

  20. X. Sun, J. Chen, R. Yu, C. Sun, G. Liu, X. Xing, and L. Qiao, J. Am. Ceram. Soc. 92, 130 (2009).

    Article  Google Scholar 

  21. R. Zuo, D. Lv, J. Fu, Y. Liu, and L. Li, J. Alloy. Compd. 476, 836 (2009).

    Article  Google Scholar 

  22. V. Sharapov, Piezoceramic Sensors, Microtechnology and MEMS (Berlin: Springer, 2011), pp. 1–21.

    Google Scholar 

  23. S.C. Das, A. Majumdar, A. Shahee, N.P. Lalla, T. Shripathi, and R. Hippler, Ferroelectr. Lett. 28, 78 (2011).

    Article  Google Scholar 

  24. V.L. Zemlyakov, Meas.Tech. 46, 1199 (2003).

    Article  Google Scholar 

  25. F. Rubio-Marcos, J.J. Reinosa, X. Vendrell, J.J. Romero, L. Mestres, P. Leret, J.F. Fernandez, and P. Marchet, Ceram. Int. 39, 4139 (2013).

    Article  Google Scholar 

  26. M. Perez, Scr. Mater. 52, 709 (2005).

    Article  Google Scholar 

  27. S. Su, R. Zuo, Y. Ran, W. Zhao, X. Wang, and L. Li, Ceram-Silikaty 54, 320 (2010).

    Google Scholar 

  28. P. Bomlai, P. Sinsap, S. Muensit, and S.J. Milne, J. Am. Ceram. Soc. 91, 624 (2008).

    Article  Google Scholar 

  29. Y. Chang, Z. Yang, X. Chao, R. Zhang, and X. Li, Mater. Lett. 61, 785 (2007).

    Article  Google Scholar 

  30. E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov, D. Nuzhnyy, F. Kadlec, P. Vaněk, J. Petzelt, M. Eriksson, and Z. Shen, J. Appl. Phys. 107, 014111 (2010).

    Article  Google Scholar 

  31. K. Kakimoto, R. Kaneko, and I. Kagomiya, Jpn. J. Appl. Phys. 51, 09LC05 (2012).

    Article  Google Scholar 

  32. H. Orihara, S. Hashimoto, and Y. Ishibashi, J. Phys. Soc. Jpn. 63, 1031 (1994).

    Article  Google Scholar 

  33. M. Park and J. Yoo, J. Electron. Mater. 41, 3095 (2012).

    Article  Google Scholar 

  34. Y.G. Lv, C.L. Wang, J.L. Zhang, M.L. Zhao, M.K. Li, and H.C. Wang, Mater. Lett. 62, 3425 (2008).

    Article  Google Scholar 

  35. L. Zheng, R. Sahul, S. Zhang, W. Jiang, S. Li, and W. Cao, J. Appl. Phys. 114, 104105 (2013).

    Article  Google Scholar 

  36. T.R. Shrout and S.J. Zhang, J. Electroceram. 19, 111 (2007).

    Article  Google Scholar 

  37. T. Ogawa, Piezoelectric Materials and Devices—Practice and Applications, ed. F. Ebrahimi (Rijeka: Intech, 2013), p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Alin Bucur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucur, R.A., Badea, I., Bucur, .I. et al. Good Quality Factor in GdMnO3-Doped (K0.5Na0.5)NbO3 Piezoelectric Ceramics. J. Electron. Mater. 45, 3046–3052 (2016). https://doi.org/10.1007/s11664-016-4401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4401-0

Keywords

Navigation