Skip to main content
Log in

Magnetic Field-Dependent Magneto-Optical Kerr Effect in [(GeTe)2(Sb2Te3)1]8 Topological Superlattice

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We studied the magnetic field dependence of magneto-optical Kerr rotation of the [(GeTe)2/(Sb2Te3)1]8 topological superlattice at different temperatures (from 300 K to 440 K). At low temperatures (less than 360 K), the Kerr signal was within noise level. However, large Kerr rotation peaks with a mirror symmetric loop were at high temperatures (higher than 360 K). The temperature dependence of the observed Kerr signal can be attributed to the breaking of spatial inversion symmetry, which induces a narrow gap in surface state bands due to the Ge atomic layer movement-induced phase transition in the superlattice. We found that the resonant field of each Kerr peak gradually decreases with increasing temperature. On the other hand, the phase transition from a high temperature phase to a low temperature one could be controlled by external magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  2. J.E. Moore, Nature 464, 194 (2010).

    Article  Google Scholar 

  3. B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Science 314, 1757 (2006).

    Article  Google Scholar 

  4. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nature 452, 970 (2008).

    Article  Google Scholar 

  5. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nat. Phys. 5, 398 (2009).

    Article  Google Scholar 

  6. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nature 460, 1101 (2009).

    Article  Google Scholar 

  7. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  Google Scholar 

  8. J. Tominaga, X. Wang, A.V. Kolobov, and P. Fons, Phys. Status Solid. B 249, 1932 (2012).

    Article  Google Scholar 

  9. J. Tominaga, A.V. Kolobov, R. Simpson, and P. Fons, in Proceeding of the European Symposium on Phase Change and Ovonic Science (EPOCS, Aachen, Germany), 148 (2009).

  10. R.E. Simpson, P. Fons, A.V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, Nat. Nano. 6, 501 (2011).

    Article  Google Scholar 

  11. J. Tominaga, R. Simpson, P. Fons, and A.V. Kolobov, Appl. Phys. Lett. 99, 152105 (2011).

    Article  Google Scholar 

  12. J. Tominaga, A.V. Kolobov, P. Fons, T. Nakano, and S. Murakami, Adv. Mater. Interfaces 1, 1300027 (2014).

    Article  Google Scholar 

  13. D.D. Sante, P. Barone, R. Bertacco, and S. Picozzi, Adv. Mater. 25, 509 (2013).

    Article  Google Scholar 

  14. W.-K. Tse and A.H. MacDonald, Phys. Rev. Lett. 105, 057401 (2010).

    Article  Google Scholar 

  15. D. Bang, H. Awano, J. Tominaga, A.K. Bolokov, P. Fons, Y. Saito, K. Makino, T. Nakano, M. Hase, Y. Takagaki, A. Giussani, R. Calarco, and S. Murakami, Sci. Rep. 4, 5727 (2014).

    Article  Google Scholar 

  16. R.M. Martin, Electronic Structure-Basic Theory and Practical Methods (Cambridge: Cambridge University Press, 2004), p. 152.

    Book  Google Scholar 

  17. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  18. K. Schwarz and P. Blaha, Comp. Mater. Sci. 28, 259 (2003).

    Article  Google Scholar 

  19. K. Kifune, Y. Kubota, T. Matsunaga, and N. Yamada, Acta. Cryst. B 61, 492 (2005).

    Article  Google Scholar 

  20. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  21. I. Petrov, R. Imamov, and Z. Pinsker, Sov. Phys. -Cryst. 13, 339 (1968).

    Google Scholar 

  22. B.J. Kooi and J.T.M. De Hosson, J. Appl. Phys. 92, 3584 (2002).

    Article  Google Scholar 

  23. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J.H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).

    Article  Google Scholar 

  24. M. Kim, C.-H. Kim, H.-S. Kim, and J. Ihm, PNAS 109, 671 (2009).

    Article  Google Scholar 

  25. J. Tominaga, A.V. Kolobov, P.J. Fons, X. Wang, Y. Saito, T. Nakano, M. Hase, S. Murakami, J. Herfort, and Y. Takagaki, Sci. Technol. Adv. Mater. 16, 14402 (2015).

    Article  Google Scholar 

  26. M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge: Cambridge University Press, 1998), p. 128.

    Google Scholar 

  27. M. Kargarian, M. Randeria, and N. Trivedi, Sci. Rep. 5, 12683 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by CREST, JST, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Bang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, D., Awano, H., Saito, Y. et al. Magnetic Field-Dependent Magneto-Optical Kerr Effect in [(GeTe)2(Sb2Te3)1]8 Topological Superlattice. J. Electron. Mater. 45, 2496–2500 (2016). https://doi.org/10.1007/s11664-016-4389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4389-5

Keywords

Navigation