Skip to main content
Log in

Structural Polymorphism of Mn-Doped BaTiO3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The crystal structure of BaTi1−x Mn x O3 (0 ≤ x ≤ 0.5) has been determined by means of neutron powder diffraction. Upon Mn doping, the BaTi1−x Mn x O3 system undergoes structural transformations from a polar tetragonal structure with space group P4mm to a non-polar 6H-type hexagonal structure with space group P6 3 /mmc at x > 0.01, and then to a non-polar 12R-type rhombohedral structure with space group R-3m at x > 0.12. For the ferroelectric tetragonal phase, Mn doping leads to a reduction of the spontaneous polarization and the Curie temperature. In the 6H structure, Ti atoms display a strong preference for the corner-sharing octahedral sites, whereas both Ti and Mn randomly occupy the octahedral sites in the face-sharing dimers. In the 12R-structure, Ti atoms also have a strong preference for the corner-sharing octahedral sites, whereas Mn atoms occupy the octahedral sites at the centers of the face-sharing octahedral trimers. Both Ti and Mn atoms are distributed over the octahedral sites at the borders of the trimers. The absence of long-range magnetic order in the 6H-type and 12R-type phases was observed, which is due to the presence of the non-magnetic Ti ions at the centers of the corner-sharing octahedra connecting the face-sharing dimers (6H-type) and trimers (12R-type), breaking the magnetic interaction between the dimers/trimers and isolating them from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    Article  Google Scholar 

  2. G.A. Smolensky and I.E. Chupis, Sov. Phys. Uspekhi 25, 475 (1982).

    Article  Google Scholar 

  3. M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005).

    Article  Google Scholar 

  4. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).

    Article  Google Scholar 

  5. P. Curie, J. Phys. Theor. Appl. 3, 393 (1894).

    Article  Google Scholar 

  6. G.A. Smolensky, I.E. Isupov, and A.I. Agranovskaya, Sov. Phys. Solid State 1, 149 (1959).

    Google Scholar 

  7. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature 430, 541 (2004).

    Article  Google Scholar 

  8. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000).

    Article  Google Scholar 

  9. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong, Nature 429, 392 (2004).

    Article  Google Scholar 

  10. S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Article  Google Scholar 

  11. T. Okamoto, S. Kitagawa, N. Inoue, and A. Ando, Appl. Phys. Lett. 98, 072905 (2011).

    Article  Google Scholar 

  12. S. Huang, H. Chen, S.C. Wu, and J.Y.M. Lee, J. Appl. Phys. 84, 5155 (1998).

    Article  Google Scholar 

  13. A.A. Heitmann and G.A. Rossetti, Integr. Ferroelectr. 126, 155 (2011).

    Article  Google Scholar 

  14. G. Schulze, Z. Für Angew. Math. Und Mech. 43, 512 (1963).

    Article  Google Scholar 

  15. K.W. Kirby and B.A. Wechsler, J. Am. Ceram. Soc. 74, 1841 (1991).

    Article  Google Scholar 

  16. D.C. Sinclair, J.M.S. Skakle, F.D. Morrison, R.I. Smith, and T.P. Beales, J. Mater. Chem. 9, 1327 (1999).

    Article  Google Scholar 

  17. J.G. Dickson, L. Katz, and R. Ward, J. Am. Chem. Soc. 83, 3026 (1961).

    Article  Google Scholar 

  18. N.V. Dang, T. Phan, T.D. Thanh, V.D. Lam, and L.V. Hong, J. Appl. Phys. 111, 113913 (2012).

    Article  Google Scholar 

  19. H. Nakayama and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40, L1355 (2001).

    Article  Google Scholar 

  20. G.M. Keith, C.A. Kirk, K. Sarma, N.M. Alford, E.J. Cussen, M.J. Rosseinsky, and D.C. Sinclair, Chem. Mater. 16, 2007 (2004).

    Article  Google Scholar 

  21. L. Miranda, A. Feteira, D.C. Sinclair, K. Boulahya, M. Hernando, J. Ramírez, A. Varela, J.M. González-Calbet, and M. Parras, Chem. Mater. 21, 1731 (2009).

    Article  Google Scholar 

  22. V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.P. Kozlenko, I.V. Naumov, B.N. Savenko, D.V. Sheptyakov, V.A. Somenkov, A.P. Bulkin, V.A. Kudryashev, and V.A. Trounov, Phys. B 265, 258 (1999).

    Article  Google Scholar 

  23. J. Rodríguez-Carvajal, Phys. B 192, 55 (1993).

    Article  Google Scholar 

  24. R.H. Buttner and E.N. Maslen, Acta Crystallogr. Sect. B 48, 764 (1992).

    Article  Google Scholar 

  25. R.E. Cohen, Nature 358, 136 (1992).

    Article  Google Scholar 

  26. R.E. Cohen and H. Krakauer, Ferroelectrics 136, 65 (1992).

    Article  Google Scholar 

  27. A. Filippetti and N.A. Hill, Phys. Rev. B 65, 195120 (2002).

    Article  Google Scholar 

  28. V.S. Tiwari, N. Singh, and D. Pandey, J. Phys. Condens. Matter 7, 1441 (1995).

    Article  Google Scholar 

  29. P.K. Singh and A. Chandra, J. Phys. D Appl. Phys. 36, L93 (2003).

    Article  Google Scholar 

  30. H.T. Langhammer, T. Müller, K.-H. Felgner, and H.-P. Abicht, J. Am. Ceram. Soc. 83, 605 (2004).

    Article  Google Scholar 

  31. V.F. Sears, Neutron News 3, 26 (1992).

    Article  Google Scholar 

  32. F.A. Garcia, U.F. Kaneko, E. Granado, J. Sichelschmidt, M. Hölzel, J.G.S. Duque, C.A.J. Nunes, R.P. Amaral, P. Marques-Ferreira, and R. Lora-Serrano, Phys. Rev. B 91, 224416 (2015).

    Article  Google Scholar 

  33. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  34. P.D. Battle, T.C. Gibb, and C.W. Jones, J. Solid State Chem. 74, 60 (1988).

    Article  Google Scholar 

  35. J.J. Adkin and M.A. Hayward, Chem. Mater. 19, 755 (2007).

    Article  Google Scholar 

  36. J.J. Adkin and M.A. Hayward, J. Solid State Chem. 179, 70 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2014.11 and the RFBR Grant No. 15-52-54008_viet_a. This work has been jointly supported by the Vietnam Academy of Science and Technology and Russian Academy under project VAST.HTQT.NGA.01/15-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, N.T., Kozlenko, D.P., Phan, T.L. et al. Structural Polymorphism of Mn-Doped BaTiO3 . J. Electron. Mater. 45, 2477–2483 (2016). https://doi.org/10.1007/s11664-016-4382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4382-z

Keywords

Navigation