Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion

Abstract

The practical realization of thermophotovoltaic (TPV) cells, which can directly convert heat into electric power, is of considerable technological interest. However, most existing TPV cells require heat sources at temperatures of ∼1800°C. Here we report a low bandgap mid-infrared cell based on InAs and demonstrate TPV operation with heat sources at temperatures in the range 500–950°C. The maximum open circuit voltage (V oc) and short circuit current density (J sc) were measured as 0.06 V and 0.89 A cm−2 for a blackbody temperature of 950°C and an incident power density of 720 mW cm−2 without antireflection coating or electrode optimisation. TPV operation was obtained with heat sources at temperatures as low as 500°C, which represents progress towards energy scavenging and waste heat recovery applications.

References

  1. 1.

    M.G. Mauk and V.M. Andreev, Semicond. Sci. Technol. 18, S191–S201 (2003).

    Article  Google Scholar 

  2. 2.

    See EU PVSEC 2016 for example TPV papers from the European PV solar energy conferences available at: https://www.photovoltaic-conference.com/93-27th-eu-pvsec/parallelevents/1636-tpv-10conference-2012.html (2012).

  3. 3.

    N.A. Pfiester, D.F. DeMeo, C.M. Shemela, and T.E. Vandervelde, J. Electron. Mater. 41, 928 (2012).

    Article  Google Scholar 

  4. 4.

    D. Woolf, J. Hensley, J.G. Cederberg, D.T. Bethke, A.D. Grine, and E.A. Shaner, Appl. Phys. Lett. 105, 081110 (2014).

    Article  Google Scholar 

  5. 5.

    S.L. Murray, F.D. Newman, C.S. Murray, D. M. Wilt, M.W. Wanlass, P. Ahrenkiel, R. Messham, and R.R Siergiej Semicond. Sci. & Technol. 18, S202 (2003).

  6. 6.

    R. DiMatteo, P. Greiff, D. Seltzer, D. Meulenberg, E. Brown, E. Carlen, K. Kaiser, S. Finberg, H. Nguyen, J. Azarkevich, P. Baldasaro, J. Beausang, L. Danielson, M. Dashiell, D. DePoy, H. Ehsani, W. Topper, K. Rahner, and R. Siergiej, AIP Conference Proceedings (2004) vol. 738, p. 42.

  7. 7.

    W.R. Chan, C.M. Waits, J.D. Joannopoulos, and I. Celanovic, Micro Nanotechnol. Sens. Syst. Appl. VI 9083, 90831W (2014).

    Google Scholar 

  8. 8.

    G.D. Cody in T.J. Coutts, J.P. Benner, and C.S. Allman (Eds.), AIP Conference Proceedings (1998), vol. 450, p. 58.

  9. 9.

    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  Google Scholar 

  10. 10.

    R.S. Tuley and R.J. Nicholas, J. Appl. Phys. 108, 084516 (2010).

    Article  Google Scholar 

  11. 11.

    D. DeMeo, C. Shemelya, C. Downs, A. Licht, E.S. Magden, T. Rotter, C. Dhital, S. Wilson, G. Balakrishnan, and T.E. Vandervelde, J. Electron. Mater. 43, 902 (2014).

    Article  Google Scholar 

  12. 12.

    B.C. Juang, R.B. Laghumayarapu, B.J. Foggo, P.J. Simmonds, A. Lin, B.L. Liang, and D.L. Huffaker, Appl. Phys. Lett. 106, 111101 (2015).

    Article  Google Scholar 

  13. 13.

    V.A. Gevorkyana, V.M. Aroutiouniana, K.M. Gambaryana, M.S. Kazaryana, K.J. Touryanb, and M.W. Wanlassb, Thin Solid Films 451, 124 (2004).

    Article  Google Scholar 

  14. 14.

    V.A. Gerorkyan, V.M. Aroutiounian, K.M. Gambaryan, I.A. Andreev, L.V. Golubev, and Y.P. Yakovlev, Tech. Phys. Lett. 34, 69 (2008).

    Article  Google Scholar 

  15. 15.

    M.G. Mauk, O.V. Sulima, J.A. Cox, and R.L. Mueller, in K. Kurokawa, L.L. Kazmerski, B. McNelis, M. Yamaguchi, C. Wronski, and W.C. Sinke, eds., Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (2003) vol A-C, p. 224.

  16. 16.

    V. Andreev, V. Khvostikov, O. Khvostikova, N. Kaluzhniy, E. Oliva, V. Rumyantsev, S. Titkov, and M. Shvarts in K. Kurokawa, L.L. Kazmerski, B. McNelis, M. Yamaguchi, C. Wronski, and W.C. Sinke, eds., Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (2003) vol. A–C, 15.

  17. 17.

    O.V. Sulima, A.W. Bett, M.G. Mauk, F. Dimroth, P.S. Dutta, and R.L. Mueller in T.J. Coutts, G. Guazzoni, and J. Luther, eds. Thermophotovoltaic Generation of Electricity, AIP Conference Proceedings (2003), vol. 653, p. 434.

  18. 18.

    P. Nagpal, S.E. Han, A. Stein, and D.J. Norris, Nano Lett. 8, 3238 (2008).

    Article  Google Scholar 

  19. 19.

    M. Lim, S. Jin, S.S. Lee, and B.J. Lee, Opt. Express 23, A240 (2015).

    Article  Google Scholar 

  20. 20.

    J. Yin and R. Paiella, Opt. Express 18, 121393 (2010).

    Google Scholar 

  21. 21.

    Z.B. Tian, R.T. Hinkey, R.Q. Yang, J.F. Klem, and M.B. Johnson, 38th IEEE Photovoltaic Specialists Conference (PVSC) (Austin, TX JUN 03-08, 2012), pp. 1560–1565.

  22. 22.

    R.T. Hinkey, Z.-B. Tian, S. Rassel, R.Q. Yang, J.F. Klem, and M.B. Johnson, IEEE J. Photovolt. 3, 745 (2013).

    Article  Google Scholar 

  23. 23.

    H. Gao, A. Krier, and V. Sherstnev, Semicond. Sci. Technol. 14, 441 (1999).

    Article  Google Scholar 

  24. 24.

    http://www.ioffe.ru/SVA/NSM/Semicond/InAs/.

  25. 25.

    M. Gorlatova, A. Wallwater, and G. Zussman, IEEE Trans. Mob. Comput. 12, 1853 (2013).

    Article  Google Scholar 

  26. 26.

    D.M. Wilt, N.S. Fatemi, P.P. Jenkins, V.G. Weizer, R.W. Hoffmann, R.K. Jain, C.S. Murray, and D.R. Riley, in T.J. Coutts, C.S. Allman, and J.P. Benner, eds., Proc. 3rd NREL Thermophotovoltaic Generation of Electricity Conf., AIP Conference Proceedings (1997), vol. 40, p. 237.

Download references

Acknowledgements

Financial support for this work was provided by the UK Technology Strategy Board in collaboration with CST Global, IQE Ltd., Tata Steel, and Pilkington Ltd. under Grant No: TP11/LCE/6/I/AE096F and EPSRC Grant EP/M013707/1.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Krier.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krier, A., Yin, M., Marshall, A.R.J. et al. Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion. Journal of Elec Materi 45, 2826–2830 (2016). https://doi.org/10.1007/s11664-016-4373-0

Download citation

Keywords

  • thermophotovoltaic
  • low bandgap
  • indium arsenide
  • waste heat recovery