Skip to main content

Development of a PMMA Electrochemical Microfluidic Device for Carcinoembryonic Antigen Detection

Abstract

In this study, a poly(methyl methacrylate) (PMMA) microfluidic device fabricated by an inexpensive CO2 laser etching system was developed for detection of carcino-embryonic antigens (CEA). The device was capable of working in continuous mode and was designed with the aid of numerical simulation. The detection of target CEA was based on immuno-assay via magnetic particles and electrochemical sensing. The as-prepared microfluidic can be used to detect CEA at the relatively low concentration of 150 pg mL−1. The device could be reused many times, since the capture and removal of magnetic particles in the assay could be manipulated by an external magnetic field. The proposed approach appears to be suitable␣for high-throughput and automated analysis of large biomolecules such as tumor markers and pathogens.

Graphical Abstract

This is a preview of subscription content, access via your institution.

References

  1. P. Gold and S.O. Freedman, J. Exp. Med. 121, 439 (1965).

    Article  Google Scholar 

  2. M. Uehara, T. Kinoshita, T. Hojo, T.S. Akashi, E. Iwamoto, and T. Fukutomi, Int. J. Clin. Oncol. 13, 447 (2008).

    Article  Google Scholar 

  3. M. Grunnet and J.B. Sorensen, Lung Cancer 76, 138 (2012).

    Article  Google Scholar 

  4. M.J. Duffy, Clin. Chem. 47, 624 (2001).

    Google Scholar 

  5. W.G. Doos, W.I. Wolff, H. Shiny, A. Dechabon, R.J. Stenger, L.S. Gottlieb, and N. Zamcheck, Cancer 36, 1996 (1975).

    Article  Google Scholar 

  6. J. Wu, J. Tang, Z. Dai, F. Yan, H. Ju, and N.E. Murr, Biosens. Bioelectron. 22, 102 (2006).

    Article  Google Scholar 

  7. H. Tang, J. Chen, L. Nie, Y. Kuang, and S. Yao, Biosens. Bioelectron. 22, 1061 (2007).

    Article  Google Scholar 

  8. X. He, R. Yuan, Y. Chai, and Y. Shi, J. Biochem. Biophys. Meth. 70, 823 (2008).

    Article  Google Scholar 

  9. B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, H.S. Eden, and X. Chen, ACS Nano 6, 6546 (2012).

    Article  Google Scholar 

  10. S. Viswanathan, C. Rani, A.V. Anand, and J.A. Ho, Biosens. Bioelectron. 24, 1984 (2009).

    Article  Google Scholar 

  11. Z. Altintas, S.S. Kallempudi, U. Sezerman, and Y. Gurbuz, Sens. Actuators B: Chem. 174, 187 (2012).

    Article  Google Scholar 

  12. J. Gao, Z. Guo, F. Su, L. Gao, X. Pang, W. Cao, B. Du, and Q. Wei, Biosens. Bioelectron. 63, 465 (2015).

    Article  Google Scholar 

  13. M.A. Hayes, T.N. Polson, A.N. Phayre, and A.A. Garcia, Anal. Chem. 73, 5896 (2001).

    Article  Google Scholar 

  14. J.W. Choi, K.W. Oh, J.H. Thomas, W.R. Heineman, H.B. Halsall, J.H. Nevin, A.J. Helmicki, H.T. Henderson, and C.H. Ahn, Lab Chip 2, 27 (2002).

    Article  Google Scholar 

  15. D.J. Harrison, A. Manz, Z. Fan, H. Luedi, and H.M. Widmer, Anal. Chem. 64, 1926 (1992).

    Article  Google Scholar 

  16. G.M. Whitesides, Nature 442, 368 (2006).

    Article  Google Scholar 

  17. J. Verbarg, K. Kamgar-Parsi, A.R. Shields, P.B. Howell, and S.L. Frances, Lab Chip 12, 1793 (2012).

    Article  Google Scholar 

  18. F. Berti, S. Laschi, I. Palchetti, J.S. Rossier, F. Reymond, M. Mascini, and G. Marrazza, Talanta 77, 971 (2009).

    Article  Google Scholar 

  19. K. Choi, A.H. Ng, R. Fobel, D.A. Chang-Yen, L.E. Yarnell, E.L. Pearson, C.M. Oleksak, A.T. Fischer, R.P. Luoma, J.M. Robinson, J. Audet, and A.R. Wheeler, Anal. Chem. 85, 9638 (2013).

    Article  Google Scholar 

  20. D.L. Tran, T.D. Nguyen, H.B. Nguyen, P.Q. Do, and L.H. Nguyen, Talanta 85, 1560–1565 (2011).

    Article  Google Scholar 

  21. V. Hessel, H. Löwe, and F. Schönfeld, Chem. Eng. Sci. 60, 2479 (2005).

    Article  Google Scholar 

  22. T.T. Veenstra, T.S.J. Lammerink, M.C. Elwenspoek, and A. van den Berg, J. Micromech. Microeng. 9, 199–202 (1999).

    Article  Google Scholar 

  23. A. Chen and B. Shaha, Anal. Methods 5, 2158 (2013).

    Article  Google Scholar 

  24. E.Eskelinen and M. Haukka, J. Chem. Soc. Dalton Trans. 16, 2745 (2000).

    Article  Google Scholar 

  25. K.M. Sajid, K. Chaouachi, and R. Mahmood, Harm. Reduct. J. 5, 19 (2008).

    Article  Google Scholar 

  26. A. Litvak, A. Cercek, N. Segal, D. Reidy-Lagunes, Z.K. Stadler, R.D. Yaeger, N.E. Kemeny, M.R. Weiser, M.S. Pessin, and L. Saltz, J. Natl. Compr. Canc. Netw. 12, 907 (2014).

    Google Scholar 

Download references

Acknowledgements

Funding of this work was mainly provided by the National Foundation for Science and Technology Development (NAFOSTED) 103.02-2012.71 (Nguyen Van Anh). The authors also acknowledged the financial support from the Vietnam Academy of Science and Technology (VAST03.01/15-16). The authors are very grateful for the scientific support from Professor. Elizabeth DUFOUR-GERGAM from University Paris-Sud 11 (Paris, France).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Van Anh or Tran Dai Lam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 405 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Anh, N., Van Trung, H., Tien, B.Q. et al. Development of a PMMA Electrochemical Microfluidic Device for Carcinoembryonic Antigen Detection. J. Electron. Mater. 45, 2455–2462 (2016). https://doi.org/10.1007/s11664-016-4372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4372-1

Keywords

  • CEA
  • magnetic particles
  • continuous flow mode
  • immunosensor
  • microfluidic
  • automated