Skip to main content
Log in

Enhanced Thermoelectric Properties of Sn0.8Pb0.2Te Alloy by Mn Substitution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of (Sn0.8Pb0.2)1−x Mn x Te alloys with x = 0, 0.03, 0.06, 0.09, 0.12 and 0.15 were prepared by melting, quenching and spark plasma sintering (SPS) techniques to investigate their phases and thermoelectric properties. Mn was used as doped element in Sn0.8Pb0.2Te solid solution to reduce the carrier concentration, enhance the Seebeck coefficient and reduce the thermal conductivity of the material. Experimental results show that the SnTe-based solid solution single phase was formed in the alloys with x = 0 and 0.03. The minor irregular-shaped MnTe2 phase presents in the alloys with x ≥ 0.06, while the minor needle-like MnTe phase appears in the alloys with x ≥ 0.12, together with the SnTe-based solid solution matrix. The lattice parameter a of SnTe-based solid solution decreases nearly linearly as Mn content x increases up to 0.12, but keeps constant as x further increases. All the samples show p-type conduction. Mn doping in Sn0.8Pb0.2Te decreases its carrier concentration and thus increases its Seebeck coefficient. The solute Mn and Pb atoms in the SnTe-based solid solution, and the minor phases MnTe2 and MnTe, enhance the phonon scattering and thus reduce the thermal conductivity. As a result, the figure-of-merit ZT of the (Sn0.8Pb0.2)1−x Mn x Te composites can be enhanced with proper Mn substitution. The maximum ZT of 0.65 was obtained in the sample (Sn0.8Pb0.2)0.88Mn0.12Te at 723 K, which is higher than the 0.29 of its parent alloy Sn0.8Pb0.2Te.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Biswas, J.Q. He, Q.C. Zhang, G.Y. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).

    Article  Google Scholar 

  2. J.Q. Li, X.Y. Liu, Y. Li, S.H. Song, F.S. Liu, and W.Q. Ao, J. Alloy. Compd. 600, 8 (2014).

    Article  Google Scholar 

  3. M. Fujikane, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloy. Compd. 396, 280 (2005).

    Article  Google Scholar 

  4. E.M. Levin, B.A. Cook, J.L. Harringa, S.L. Bud’ko, R. Venkatasubramanian, and K. Schmidt-Rohr, Adv. Funct. Mater. 21, 441 (2011).

    Article  Google Scholar 

  5. K. Ahn, K. Biswas, J.Q. He, I. Chung, V. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 6, 1529 (2013).

    Article  Google Scholar 

  6. J.Q. Li, S.P. Li, Q.B. Wang, L. Wang, F.S. Liu, and W.Q. Ao, J. Alloy. Compd. 509, 4516 (2011).

    Article  Google Scholar 

  7. S.P. Li, J.Q. Li, Q.B. Wang, L. Wang, F.S. Liu, and W.Q. Ao, Solid State Sci. 13, 399 (2011).

    Article  Google Scholar 

  8. F. Herman, R.L. Kortum, I.B. Ortenburger, and J.P. Van Dyke, J. Phys. Colloques 29, 62 (1968).

    Article  Google Scholar 

  9. R.F. Brebrick, J. Phys. Chem. Solids 24, 27 (1963).

    Article  Google Scholar 

  10. J.A. Kafalas, R.F. Brebrick, and A.J. Strauss, Appl. Phys. Lett. 4, 93 (1964).

    Article  Google Scholar 

  11. Z.W. Lu, J.Q. Li, C.Y. Wang, Y. Li, F.S. Liu, and W.Q. Ao, J. Alloy. Compd. 621, 345 (2015).

    Article  Google Scholar 

  12. G. Tan, L.D. Zhao, F.Y. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006 (2014).

    Article  Google Scholar 

  13. M.K. Han, J. Androulakis, S.J. Kim, and M.G. Kanatzidis, Adv. Energy. Mater. 2, 157 (2012).

    Article  Google Scholar 

  14. Y. Chen, M.D. Nielsen, Y.B. Gao, T.J. Zhu, X.B. Zhao, and J.P. Heremans, Adv. Energy. Mater. 2, 58 (2012).

    Article  Google Scholar 

  15. M.K. Han, X.Y. Zhou, C. Uher, S.J. Kim, and M.G. Kanatzidis, Adv. Energy. Mater. 2, 1218 (2012).

    Article  Google Scholar 

  16. K. Guergouri and R. Triboulet, J. Cryst. Growth 132, 20 (1993).

    Article  Google Scholar 

  17. M. Sondermann, J. Magn. Magn. Mater. 2, 216 (1976).

    Article  Google Scholar 

  18. B. Kim, I. Kim, B.K. Min, M. Oh, S. Park, and H. Lee, Electron. Mater. Lett. 9, 477 (2013).

    Article  Google Scholar 

  19. H. Zhang, J. Luo, H.T. Zhu, Q.L. Liu, J.K. Liang, J.B. Li, and G.Y. Liu, Chinese Phys. B 21, 106101 (2012).

    Article  Google Scholar 

  20. J. He, X.J. Tan, J.T. Xu, G.Q. Liu, H.Z. Shao, Y.J. Fu, X. Wang, Z. Liu, J.Q. Xu, H.C. Jiang, and J. Jiang, J. Mater. Chem. A 3, 19974 (2015).

  21. H.J. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y.L. Pei, L. Zheng, D. Wu, S.K. Gong, Y. Chen, J.Q. He, M.G. Kanatzidis, and L.D. Zhao, Energy Environ. Sci. 8, 3298 (2015).

    Article  Google Scholar 

  22. G.J. Tan, F.Y. Shi, S.Q. Hao, H. Chi, T.P. Bailey, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 137, 11507 (2015).

    Article  Google Scholar 

  23. L.D. Didkin, V.S. Gaidukova, and L.M. Ostrovskaya, Inor. Mater. (USSR) 7, 1503 (1971).

    Google Scholar 

  24. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  25. A. Bali, R. Chetty, and R.C. Mallik, Mater. Sci. Semicon. Proc. 34, 326 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51571144 and 11504239) and Shenzhen Science and Technology Research Grant (Nos. JCYJ20140418182819176, JCYJ20140418181958489 and JCYJ201503241417 11684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Q. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.Q., Lu, Z.W., Wang, C.Y. et al. Enhanced Thermoelectric Properties of Sn0.8Pb0.2Te Alloy by Mn Substitution. J. Electron. Mater. 45, 2879–2885 (2016). https://doi.org/10.1007/s11664-016-4352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4352-5

Keywords

Navigation