Skip to main content
Log in

MBE Grown In x Ga1−x N Thin Films with Bright Visible Emission Centered at 550 nm

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The In x Ga1−x N thin films with indium content of x = 14–18 at.% were successfully grown by using molecular beam epitaxy (MBE) at high growth temperatures from 650°C to 800°C. In situ reflection high-energy electron diffraction (RHEED) of the In x Ga1−x N films confirmed the Stranski–Krastanov growth mode. X-ray diffraction (XRD) of the films confirmed their highly crystalline nature having c-axis orientation with a small fraction of secondary InN phase admixture. High-resolution cross-sectional scanning electron microscopy images showed two-dimensional epilayers growth with thickness of about ∼260 nm. The high growth temperature of In x Ga1−x N epilayers is found to be favorable to facilitate more GaN phase than InN phase. All the fundamental electronic states of In, Ga, and N were identified by x-ray photoelectron spectroscopy (XPS) and the indium composition has been calculated from the obtained XPS spectra with CASAXPS software. The composition calculations from XRD, XPS and photoluminescence closely match each other. The biaxial strain has been calculated and found to be increasing with the In content. Growing In x Ga1−x N at high temperatures resulted in the reduction in stress/strain which affects the radiative electron–hole pair recombination. The In x Ga1−x N film with lesser strain showed a brighter and stronger green emission than films with the larger built-in strain. A weak S-shaped near band edge emission profile confirms the relatively homogeneous distribution of indium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Article  Google Scholar 

  2. X.A. Cao, J.A. Teetsov, F. Shahedipour-Sandvik, and S.D. Arthur, J. Cryst. Growth 264, 172 (2004).

    Article  Google Scholar 

  3. Q.-B. Ma, R. Lieten, and G. Borghs, J. Mater. Sci. 25, 1197 (2014).

    Google Scholar 

  4. P. Sandvik, K. Mi, F. Shahedipour, P. Kung, R. McClintock, A. Yasan, and M. Razeghi, J. Cryst. Growth 231, 366 (2001).

    Article  Google Scholar 

  5. L. Sang, M. Liao, Y. Koide, and M. Sumiya, Appl. Phys. Lett. 99, 031115 (2011).

    Article  Google Scholar 

  6. J.C. Zolper, Solid State Electron. 42, 2153 (1998).

    Article  Google Scholar 

  7. S.R. McHale, J.W. McClory, J.C. Petroskym, J. Wu, A. Rivera, R. Palai, Y.B. Losovyj, and P.A. Dowben, Eur. Phys. J. Appl. Phys. 55, 31301 (2011).

    Article  Google Scholar 

  8. M.S. Shur, Solid State Electron. 41, 2131 (1998).

    Article  Google Scholar 

  9. J. Wu, R. Palai, W.M. Jadwisienczak, and M.S. Shur, J. Phys. D Appl. Phys. 45, 015104 (2012).

    Article  Google Scholar 

  10. J. Wang, K. Dasari, K. Cooper, V.R. Thota, J. Wright, R. Palai, D.C. Ingram, E.A. Stinaff, S. Kaya, and W.M. Jadwisienczak, Phys. Status Solidi C 12, 413 (2015).

    Article  Google Scholar 

  11. X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J.L. Li, J. Phys. D 40, 7335 (2007).

    Article  Google Scholar 

  12. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007).

    Article  Google Scholar 

  13. K.-C. Shen, T.-Y. Wang, D.-S. Wuu, and R.-H. Horng, Opt. Exp. 20, 21173 (2012).

    Article  Google Scholar 

  14. N. Rousseau, O. Briot, V. Ribes, and R.L. Aulombard, MRS Symp. Proc. 764, C3.50.1 (2003).

    Google Scholar 

  15. M. Goano, E. Bellotti, E. Ghillino, C. Garetto, and G. Ghione, J. Appl. Phys. 88, 6476 (2000).

    Article  Google Scholar 

  16. S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).

    Article  Google Scholar 

  17. T. Chung, J. Limb, J.-H. Ryou, W. Lee, P. Li, D. Yoo, X.-B. Zhang, S.-C. Shen, R.D. Dupuis, D. Keogh, P. Asbeck, B. Chukung, M. Feng, D. Zakharov, and Z. Lilienthal-Weber, J. Electron. Mater. 35, 695 (2006).

    Article  Google Scholar 

  18. S. Mukundan, L. Mohan, G. Chandan, B. Roul, S.B. Krupanidhi, S. Shinde, K.K. Nanda, R. Maiti, and S.K. Ray, AIP Adv. 5, 037112 (2015).

    Article  Google Scholar 

  19. C. Bazioti, E. Papadomanolaki, T. Kehagias, M. Androulidaki, G.P. Dimitrakopulos, and E. Iliopoulos, Phys. Status Solidi B 252, 1155 (2015).

    Article  Google Scholar 

  20. D.V.P. McLaughlin and J.M. Pearce, Met. Mater. Trans. A 44, 1947 (2013).

    Article  Google Scholar 

  21. A. Ichimiya and P.I. Cohen, Reflection high energy electron diffraction (Cambridge: Cambridge Publishers, 2004), p. 47.

    Book  Google Scholar 

  22. T. Yamaguchi, S. Einfeldt, S. Gangopadhyay, A. Pretorius, A. Rosenauer, J. Falta, and D. Hommel, Phys. Status Solidi (c) 3, 1396 (2006).

    Article  Google Scholar 

  23. I.I.-K. Park, Y.-S. Kim, M.-K. Kwon, S.-H. Baek, J.-Y. Kim, S.-I. Na, and S.-J. Park, Phys. Status Solidi C 2, 2887 (2005).

    Article  Google Scholar 

  24. C.B. Vartuli, S.J. Pearton, C.R. Abernathy, J.D. MacKenzie, E.S. Lambers, and J.C. Zolper, J. Vac. Sci. Technol. B 14, 3523 (1996).

    Article  Google Scholar 

  25. W.-C. Chen, Y.-H. Jr-S Tian, W.-L.Wang Wu, S.-Y. Kuo, F.-I. Lai, and L. Chang, ECS. J. Solid State Sci. Technol. 2, 305 (2013).

    Article  Google Scholar 

  26. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray photoelectron spectroscopy physical electronics, ed. J. Chastain and R.C. King, Jr (Minnesota: Physical Electronics Inc., 1995), p. 91.

    Google Scholar 

  27. E. Cruz-Hernández, M. Ramirez-Lopez, M. Pérez-Caro, P.G. Mani-Gonzalez, A. Herrera-Gómez, A. Yu Gorbatchev, M. López-López, and V.H. Méndez-García, J. Cryst. Growth 378, 295 (2013).

    Article  Google Scholar 

  28. C.-C. Hong, H. Ahn, C.-Y. Wu, and S. Gwo, Opt. Exp. 17, 17227 (2009).

    Article  Google Scholar 

  29. H. Murotani, Y. Yamada, T. Tabata, Y. Honda, M. Yamaguchi, and H. Amano, J. Appl. Phys. 114, 153506 (2013).

    Article  Google Scholar 

  30. T. Hanada, Oxide and nitride semiconductors processing, properties, and applications, ed. T. Yao and S.-K. Hong (New York: Springer Publishers, 2009), p. 7.

    Google Scholar 

  31. K. Kim, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 53, 16310 (1996).

    Article  Google Scholar 

  32. M.-Y. Xie, F. Tasnadi, I.A. Abrikosov, L. Hultman, and V. Darakchieva, Phys. Rev. B 86, 155310 (2012).

    Article  Google Scholar 

  33. Z. Dridi, B. Bouhafs, and P. Ruterana, Semicond. Sci. Technol. 18, 850 (2003).

    Article  Google Scholar 

  34. I. Vurgaftman and J.R. Meyer, J. Appl. Phys. 94, 2675 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors from the University of Puerto Rico acknowledge the support received from the National Science Foundation (DMR-1410869). RP is grateful for the NSF CREST Supplement Award through the Norfolk State University. KD thanks the Institute for Functional Nananomaterials—University of Puerto Rico (IFN-UPR) Rio Piedras campus for the fellowship. WMJ acknowledges the support by the National Science Foundation CAREER Award under Contract No. DMR-1056493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasari, K., Thapa, B., Wang, J. et al. MBE Grown In x Ga1−x N Thin Films with Bright Visible Emission Centered at 550 nm. J. Electron. Mater. 45, 2071–2077 (2016). https://doi.org/10.1007/s11664-016-4349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4349-0

Keywords

Navigation