Skip to main content
Log in

Microstructural Evolution of SAC305 Solder Joints in Wafer Level Chip-Scale Packaging (WLCSP) with Continuous and Interrupted Accelerated Thermal Cycling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Four high-strain design wafer level chip scale packages were given accelerated thermal cycling with a 10°C/min ramp rate and 10 min hold times between 0°C and 100°C to examine the effects of continuous and interrupted thermal cycling on the number of cycles to failure. The interruptions given two of the samples were the result of periodic examinations using electron backscattered pattern mapping, leading to room temperature aging of 30 days–2.5 years after increments of about 100 cycles at several stages of the cycling history. The continuous thermal cycling resulted in solder joints with a much larger degree of recrystallization, whereas the interrupted thermal cycling tests led to much less recrystallization, which was more localized near the package side, and the crack was more localized near the interface and had less branching. The failure mode for both conditions was still the same, with cracks nucleating along the high angle grain boundaries formed during recrystallization. In conditions where there were few recrystallized grains, recovery led to formation of subgrains that strengthened the solder, and the higher strength led to a larger driving force for crack growth through the solder, leading to failure after less than half of the cycles in the continuous accelerated thermal cycling condition. This work shows that there is a critical point where sufficient strain energy accumulation will trigger recrystallization, but this point depends on the rate of strain accumulation in each cycle and various recovery processes, which further depends on local crystal orientations, stress state evolution, and specific activated slip and twinning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Borgesen, T. Bieler, L.P. Lehman, and E.J. Cotts, MRS Bull. 32, 360 (2007).

    Article  Google Scholar 

  2. J.G. Lee, L. Telang, K.N. Subramanian, and T.R. Bieler, J. Electron. Mater. 31, 1152 (2002).

    Article  Google Scholar 

  3. J.G. Lee and K.N. Subramanian, J. Electron. Mater. 32, 523 (2003).

    Article  Google Scholar 

  4. J.G. Lee and K.N. Subramanian, Microelectron. Reliab. 47, 118 (2007).

    Article  Google Scholar 

  5. J.H.L. Pang, T.H. Low, B.S. Xiong, L.H. Xu, and C.C. Neo, Thin Solid Films 462, 370 (2004).

    Article  Google Scholar 

  6. A. Syed and IEEE, In 54th Electronic Components & Technology Conference, Vols 1 and 2, Proceedings, (IEEE: New York, 2004), p. 737.

  7. S. Terashima, T. Kohno, A. Mizusawa, K. Arai, O. Okada, T. Wakabayashi, M. Tanaka, and K. Tatsumi, J. Electron. Mater. 38, 33 (2009).

    Article  Google Scholar 

  8. T.T. Mattila, H. Xu, O. Ratia, M. Paulasto-Krockel, and IEEE, 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC 2010), p. 581.

  9. J. Hokka, T.T. Mattila, H.B. Xu, and M. Paulasto-Krockel, J. Electron. Mater. 42, 963 (2013).

    Article  Google Scholar 

  10. J. Hokka, T.T. Mattila, H.B. Xu, and M. Paulasto-Krockel, J. Electron. Mater. 42, 1171 (2013).

    Article  Google Scholar 

  11. D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, S.K. Kang, P. Lauro, D.Y. Shih, C. Goldsmith, and K.J. Puttlitz, J. Mater. Res. 19, 1608 (2004).

    Article  Google Scholar 

  12. S. Terashima, K. Takahama, M. Nozaki, and M. Tanaka, Mater. Trans. 45, 1383 (2004).

    Article  Google Scholar 

  13. T.T. Mattila and J.K. Kivilahti, J. Electron. Mater. 35, 250 (2006).

    Article  Google Scholar 

  14. A.U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).

    Article  Google Scholar 

  15. H.T. Chen, J. Han, J. Li, and M.Y. Li, Microelectron. Reliab. 52, 1112 (2012).

    Article  Google Scholar 

  16. A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.R. Lehman, Y. Xing, and E.J. Cotts, J. Electron. Mater. 33, 1412 (2004).

    Article  Google Scholar 

  17. T.R. Bieler, H.R. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).

    Article  Google Scholar 

  18. T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.K. Lee, and K.C. Liu, J. Electron. Mater. 41, 283 (2012).

    Article  Google Scholar 

  19. H.T. Chen, T. Mattila, J. Li, X.W. Liu, M.Y. Li, and J.K. Kivilahti, Localized Recrystallization and Cracking Behavior of Lead-free Solder Interconnections under Thermal Cycling (New York: IEEE, 2009).

    Book  Google Scholar 

  20. T. Laurila, T. Mattila, V. Vuorinen, J. Karppinen, J. Li, M. Sippola, and J.K. Kivilahti, Microelectron. Reliab. 47, 1135 (2007).

    Article  Google Scholar 

  21. J. Li, T.T. Mattila, and J.K. Kivilahti, J. Electron. Mater. 39, 77 (2010).

    Article  Google Scholar 

  22. T.-K. Lee, B. Zhou, and T.R. Bieler, IEEE Trans. Compon. Packag. Technol. 2, 496 (2012).

    Article  Google Scholar 

  23. R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts, J. Mater. Res. 20, 2914 (2005).

    Article  Google Scholar 

  24. A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).

    Article  Google Scholar 

  25. S.K. Seo, S. Kang, D.Y. Shih, and H. Lee, J. Electron. Mater. 38, 257 (2009).

    Article  Google Scholar 

  26. K.N. Subramanian and J.G. Lee, J. Mater. Sci. 15, 235 (2004).

    Google Scholar 

  27. T.K. Lee, B.T. Zhou, L. Blair, K.C. Liu, and T.R. Bieler, J. Electron. Mater. 39, 2588 (2010).

    Article  Google Scholar 

  28. L. Yin, L. Wentlent, L.L. Yang, B. Arfaei, A. Oasaimeh, and P. Borgesen, J. Electron. Mater. 41, 241 (2012).

    Article  Google Scholar 

  29. B. Zhou, T.R. Bieler, T.K. Lee, and K.C. Liu, J. Electron. Mater. 39, 2669 (2010).

    Article  Google Scholar 

  30. B. Zhou, G. Muralidharan, K. Kurumadalli, C.M. Parish, S. Leslie, and T.R. Bieler, J. Electron. Mater. 43, 57 (2014).

    Article  Google Scholar 

  31. B. Zhou, T.R. Bieler, T.K. Lee, and W.J. Liu, J. Electron. Mater. 42, 319 (2013).

    Article  Google Scholar 

  32. B. Zhou, Q. Zhou, T.R. Bieler, and T.K. Lee, J. Electron. Mater. 44, 895 (2015).

    Article  Google Scholar 

  33. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng., A 238, 219 (1997).

    Article  Google Scholar 

  34. S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 29, 1249 (2000).

    Article  Google Scholar 

  35. P. Darbandi, T.R. Bieler, F. Pourboghrat, and T.K. Lee, J. Electron. Mater. 43, 2521 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF-GOALI Award 1006656 and Cisco Systems Inc., San Jose, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bieler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Zhou, B., Lee, TK. et al. Microstructural Evolution of SAC305 Solder Joints in Wafer Level Chip-Scale Packaging (WLCSP) with Continuous and Interrupted Accelerated Thermal Cycling. J. Electron. Mater. 45, 3013–3024 (2016). https://doi.org/10.1007/s11664-016-4343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4343-6

Keywords

Navigation