Skip to main content

Intrinsic Doping in Electrodeposited ZnS Thin Films for Application in Large-Area Optoelectronic Devices

Abstract

Zinc sulphide (ZnS) thin films with both n- and p-type electrical conductivity were grown on glass/fluorine-doped tin oxide-conducting substrates from acidic and aqueous solution containing ZnSO4 and (NH4)2S2O3 by simply changing the deposition potential in a two-electrode cell configuration. After deposition, the films were characterised using various analytical techniques. X-ray diffraction analysis reveals that the materials are amorphous even after heat treatment. Optical properties (transmittance, absorbance and optical bandgap) of the films were studied. The bandgaps of the films were found to be in the range (3.68–3.86) eV depending on the growth voltage. Photoelectrochemical cell measurements show both n- and p-type electrical conductivity for the films depending on the growth voltage. Scanning electron microscopy shows material clusters on the surface with no significant change after heat treatment at different temperatures. Atomic force microscopy shows that the surface roughness of these materials remain fairly constant reducing only from 18 nm to 17 nm after heat treatment. Thickness estimation of the films was also carried out using theoretical and experimental methods. Direct current conductivity measurements on both as-deposited and annealed films show that resistivity increased after heat treatment.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. Yasuda, K. Hara, and H. Kukimoto, J. Cryst. Growth 77, 485 (1986).

    Article  Google Scholar 

  2. 2.

    S. Tec-Yam, J. Rojas, V. Rejon, and A.I. Oliva, Mater. Chem. Phys. 136, 386 (2012).

    Article  Google Scholar 

  3. 3.

    O.K. Echendu, F. Fauzi, A.R. Weerasinghe, and I.M. Dharmadasa, Thin Solid Films 556, 529 (2014).

    Article  Google Scholar 

  4. 4.

    O.K. Echendu and I.M. Dharmadasa, Energies 8, 4416 (2015). doi:10.3390/en8054416.

    Article  Google Scholar 

  5. 5.

    O.K. Echendu and I.M. Dharmadasa, J. Electron. Mater. 43, 791 (2014).

    Article  Google Scholar 

  6. 6.

    O.K. Echendu, A.R. Weerasinghe, D.G. Diso, F. Fauzi, and I.M. Dharmadasa, J. Electron. Mater. 42, 692 (2013).

    Article  Google Scholar 

  7. 7.

    N.K. Abbas, K.T. Al-Rasoul, and Z.J. Shanan, Int. J. Electrochem. Sci. 8, 3049 (2013).

    Google Scholar 

  8. 8.

    J. Han, G. Fu, V. Krishnakumar, C. Liao, W. Jaegermann, and M.P. Besland, J. Phys. Chem. Solids 74, 1879 (2013).

    Article  Google Scholar 

  9. 9.

    A. Pudov, J. Sites, and T. Nakada, http://www2.physics.colo state.edu/groups/photovoltaic/PDFs/CSU-AGU%20paper. PDF. Accessed 04/08/2015.

  10. 10.

    Z. Limei, X. Yuzhi, and L. Jianfeng, J. Environ. Sci. Suppl. 21, S76–S79 (2009).

  11. 11.

    A. Ates, M.A. Yildirim, M. Kundakci, and A. Astam, Mater. Sci. Semicond. Process. 10, 281 (2007).

    Article  Google Scholar 

  12. 12.

    C. Falcony, M. Garcia, A. Ortiz, and J.C. Alonso, J. Appl. Phys. 72, 1525 (1992).

    Article  Google Scholar 

  13. 13.

    A.B. Bhalerao, C.D. Lokhande, and B.G. Wagh, IEEE Trans. Nano Technol. 12, 996 (2013).

    Article  Google Scholar 

  14. 14.

    D. Peng, Z. Xi-Qing, S. Xue-Bai, Y. Zhi-Gang, and W. Yong-Sheng, Chin. Phys. 15, 1370 (2006).

    Article  Google Scholar 

  15. 15.

    I.M. Dharmadasa, A.P. Samantilleke, J. Young, and M.H. Boyle, J. Mater. Sci. Mater. Electron. 10, 441 (1999).

    Article  Google Scholar 

  16. 16.

    I.M. Dharmadasa, P.A. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G.U. Sumanasekera, R.R. Dharmadasa, M.B. Dergacheva, K.A. Mit, K.A. Urazov, L. Bowen, M. Walls, and A. Abbas, Coatings 4, 380 (2014).

    Article  Google Scholar 

  17. 17.

    D. Kurbatov, V. Kosyak, M. Kolesnyk, A. Opanasyuk, and S. Danilchenko, Integr. Ferroelectr. 103, 32 (2008).

    Article  Google Scholar 

  18. 18.

    J. Diaz-Reyes, R. Castillo-Ojeda, J. Martinez-Juarez, O. Zaca-Moran, J.E. Flores-Mena, and M. Galvan-Arellano, Int. J. Circuits, Syst. Signal Process. 8, 15–21 (2014).

  19. 19.

    S. Radhu and C. Vijayan, Mater. Chem. Phys. 129, 1132 (2011).

    Article  Google Scholar 

  20. 20.

    J. Tauc, R. Grigorovini, and A. Vancu, Phys. Status Solidi. 15, 627 (1966).

    Article  Google Scholar 

  21. 21.

    K.L. Chopra, P.D. Paulson, and V. Dutta, Prog. Photovolt. Res. Appl. 12, 69 (2004).

    Article  Google Scholar 

  22. 22.

    R.K. Pandey, S.B. Sahu, and S. Chandra, Handbook of Semiconductor Electrodeposition (New York: Allen H. Hermann, Marcel Dekker Inc., 1996).

    Google Scholar 

  23. 23.

    O.K. Echendu (Doctoral Thesis, 106, Sheffield Hallam University, Sheffield, United Kingdom).

  24. 24.

    J.D. Joseph and R.C. Neville, J. Appl. Phys. 48, 1941 (1977).

    Article  Google Scholar 

  25. 25.

    A.U. Ubale and D.K. Kulkarni, Bull. Mater. Sci. 28, 43 (2005).

    Article  Google Scholar 

  26. 26.

    H.K. Sadekar, N.G. Deshpande, Y.G. Gudage, A. Ghosh, S.D. Chavhan, S.R. Gosavi, and R. Sharma, J. Alloys Compd. 453, 519 (2008).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Lamido Madugu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madugu, M.L., Olusola, O. O., Echendu, O. . et al. Intrinsic Doping in Electrodeposited ZnS Thin Films for Application in Large-Area Optoelectronic Devices. Journal of Elec Materi 45, 2710–2717 (2016). https://doi.org/10.1007/s11664-015-4310-7

Download citation

Keywords

  • n-Type and p-type ZnS
  • thin film
  • electrodeposition
  • intrinsic doping
  • amorphous