Skip to main content
Log in

Fabrication and Characterization of Large-Area Unpatterned and Patterned Plasmonic Gold Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report fabrication of Au nanoisland films on different substrates by thermally annealing a sputtered Au nanolayer and investigation of their structure, morphology, and optical properties. It was found that high-temperature annealing leads to transformation of the initial, continuous film into the forms of hillock and isolated island film. The final nanoisland films exhibit remarkably enhanced and localized plasmon resonance spectra with respect to the original sputtered film. The strong dependence of the resonance band spectra of the resulting structures on the annealing temperature and supporting substrate is presented and analyzed, suggesting that both of these factors could be used to tune the optical spectroscopic properties of such structures. Moreover, we propose and demonstrate a novel and effective approach for fabrication of patterned Au structures by thermally annealing the Au layer deposited onto modulated-surface substrates. The experimental results indicate that this method could become a promising approach for manufacturing plasmonic array structures, which have been extensively investigated and widely applied in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Heidelberg: Springer, 1995), p. 50.

    Book  Google Scholar 

  2. R.H. Doremus, J. Appl. Phys. 37, 2775 (1966).

    Article  Google Scholar 

  3. P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006).

    Article  Google Scholar 

  4. E. Hutter and J.H. Fendler, Adv. Mater. 16, 1685 (2004).

    Article  Google Scholar 

  5. T. Xu, Y.K. Wu, X. Luo, and L.J. Guo, Nat. Commun. 1, 1 (2010).

    Google Scholar 

  6. Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. Zhang, Opt. Express 21, 11315 (2013).

    Article  Google Scholar 

  7. A.G. Brolo, Nat. Photon. 6, 709 (2012).

    Article  Google Scholar 

  8. V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, and A.N. Grigorenko, Nat. Mater. 12, 304 (2013).

    Article  Google Scholar 

  9. S. Norrman, T. Andersson, C.G. Granqvist, and O. Hunderi, Phys. Rev. B 18, 674 (1978).

    Article  Google Scholar 

  10. P. Lansaker, J. Backholm, G. Niklasson, and C. Granqvist, Thin Solid Films 518, 1225 (2009).

    Article  Google Scholar 

  11. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolska, and V. Švorčík, Nanoscale Res. Lett. 6, 96 (2011).

    Article  Google Scholar 

  12. G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, Nanotechnology 20, 025703 (2009).

    Article  Google Scholar 

  13. A. Serrano, O. Rodrıguez de la Fuente, and M.A. Garcıa, J. Appl. Phys. 108, 074303 (2010).

    Article  Google Scholar 

  14. V. Švorčík, O. Kvıtek, O. Lyutakov, J. Siegel, and Z. Kolska, Appl. Phys. A 102, 747 (2011).

    Article  Google Scholar 

  15. F. Ma, M.H. Hong, and L.S. Tan, Appl. Phys. A 93, 907 (2008).

    Article  Google Scholar 

  16. Y. Song and H.E. Elsayed-Ali, Appl. Surf. Sci. 256, 5961 (2010).

    Article  Google Scholar 

  17. J. Siegel, J. Heitz, and V. Švorčík, Surf. Coat. Technol. 206, 517 (2011).

    Article  Google Scholar 

  18. J. Tuma, O. Lyutakov, I. Huttel, J. Siegel, J. Heitz, Y. Kalachyova, and V. Švorčík, J. Mater. Sci. 48, 900 (2013).

    Article  Google Scholar 

  19. P. Buffat, J. Borel, Phys. Rev. A 13(6) (1976)

  20. P.R. Couchman and W.A. Jesser, Nature 269, 481 (1977).

    Article  Google Scholar 

  21. T. Karakouz, A.B. Tesler, T.A. Bendikov, A. Vaskevich, and I. Rubinstein, Adv. Mater. 20, 3893 (2008).

    Article  Google Scholar 

  22. M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, Cryst. Growth Des. 10, 587 (2010).

    Article  Google Scholar 

  23. V.L. De Los Santos, D. Lee, J. Seo, F.L. Leon, D.A. Bustamante, S. Suzuki, Y. Majima, T. Mitrelias, A. Ionescu, and C.H. Barnes, Surf. Sci. 603(19), 2978 (2009)

  24. V. Svorcık, O. Kvıtek, J. Rıha, Z. Kolska, and J. Siegel, Vacuum 86, 729 (2012).

    Article  Google Scholar 

  25. H. Liu, X. Zhang, and Z. Gao, Photon. Nanostruct. Fund. Appl. 8, 131 (2010).

    Article  Google Scholar 

  26. X. Zhang, H. Liu, and S. Feng, Nanotechnology 20, 425303 (2009).

    Article  Google Scholar 

  27. N.D. Lai, W.P. Liang, J.H. Lin, C.C. Hsu, and C.H. Lin, Opt. Express 13, 9605 (2005).

    Article  Google Scholar 

  28. N.D. Lai, J.H. Lin, Y.Y. Huang, and C.C. Hsu, Opt. Express 14, 10746 (2006).

    Article  Google Scholar 

  29. N.D. Lai, C.C. Hsu, D.B. Do, J.H. Lin, T.S. Zheng, W.P. Liang, Y.Y. Huang, and Y. Di Huang, Fabrication of Two and Three-Dimensional Photonic Crystals and Photonic Quasi Crystals by Interference Technique (INTECH Open Access Publisher, 2011), p. 255

  30. Y. Chu, E. Schonbrun, T. Yang, and K.B. Crozier, Appl. Phys. Lett. 93, 181108 (2008).

    Article  Google Scholar 

  31. A.D. Humphrey and W.L. Barnes, Phys. Rev. B 90(7) (2014)

  32. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Nature 391, 667 (1998).

    Article  Google Scholar 

  33. G. Si, X. Jiang, J. Lv, Q. Gu, and F. Wang, Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  34. X. Zhang, B. Sun, R.H. Friend, H. Guo, D. Nau, and H. Giessen, Nano Lett. 6, 651 (2006).

    Article  Google Scholar 

  35. X. Zhang, H. Liu, and Z. Pang, Plasmonics 6, 273 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Arnaud Brosseau and Mr. Joseph Lautru for their support in AFM and SEM measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Thanh Do.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, M.T., Tong, Q.C., Luong, M.H. et al. Fabrication and Characterization of Large-Area Unpatterned and Patterned Plasmonic Gold Nanostructures. J. Electron. Mater. 45, 2347–2353 (2016). https://doi.org/10.1007/s11664-015-4291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4291-6

Keywords

Navigation