Advertisement

Journal of Electronic Materials

, Volume 45, Issue 5, pp 2347–2353 | Cite as

Fabrication and Characterization of Large-Area Unpatterned and Patterned Plasmonic Gold Nanostructures

  • Minh Thanh DoEmail author
  • Quang Cong Tong
  • Mai Hoang Luong
  • Alexander Lidiak
  • Isabelle Ledoux-Rak
  • Ngoc Diep Lai
Article

Abstract

We report fabrication of Au nanoisland films on different substrates by thermally annealing a sputtered Au nanolayer and investigation of their structure, morphology, and optical properties. It was found that high-temperature annealing leads to transformation of the initial, continuous film into the forms of hillock and isolated island film. The final nanoisland films exhibit remarkably enhanced and localized plasmon resonance spectra with respect to the original sputtered film. The strong dependence of the resonance band spectra of the resulting structures on the annealing temperature and supporting substrate is presented and analyzed, suggesting that both of these factors could be used to tune the optical spectroscopic properties of such structures. Moreover, we propose and demonstrate a novel and effective approach for fabrication of patterned Au structures by thermally annealing the Au layer deposited onto modulated-surface substrates. The experimental results indicate that this method could become a promising approach for manufacturing plasmonic array structures, which have been extensively investigated and widely applied in many fields.

Keywords

Gold structures plasmonics thermal annealing laser interference lithography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge Mr. Arnaud Brosseau and Mr. Joseph Lautru for their support in AFM and SEM measurements, respectively.

References

  1. 1.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Heidelberg: Springer, 1995), p. 50.CrossRefGoogle Scholar
  2. 2.
    R.H. Doremus, J. Appl. Phys. 37, 2775 (1966).CrossRefGoogle Scholar
  3. 3.
    P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006).CrossRefGoogle Scholar
  4. 4.
    E. Hutter and J.H. Fendler, Adv. Mater. 16, 1685 (2004).CrossRefGoogle Scholar
  5. 5.
    T. Xu, Y.K. Wu, X. Luo, and L.J. Guo, Nat. Commun. 1, 1 (2010).Google Scholar
  6. 6.
    Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. Zhang, Opt. Express 21, 11315 (2013).CrossRefGoogle Scholar
  7. 7.
    A.G. Brolo, Nat. Photon. 6, 709 (2012).CrossRefGoogle Scholar
  8. 8.
    V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, and A.N. Grigorenko, Nat. Mater. 12, 304 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Norrman, T. Andersson, C.G. Granqvist, and O. Hunderi, Phys. Rev. B 18, 674 (1978).CrossRefGoogle Scholar
  10. 10.
    P. Lansaker, J. Backholm, G. Niklasson, and C. Granqvist, Thin Solid Films 518, 1225 (2009).CrossRefGoogle Scholar
  11. 11.
    J. Siegel, O. Lyutakov, V. Rybka, Z. Kolska, and V. Švorčík, Nanoscale Res. Lett. 6, 96 (2011).CrossRefGoogle Scholar
  12. 12.
    G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, Nanotechnology 20, 025703 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Serrano, O. Rodrıguez de la Fuente, and M.A. Garcıa, J. Appl. Phys. 108, 074303 (2010).CrossRefGoogle Scholar
  14. 14.
    V. Švorčík, O. Kvıtek, O. Lyutakov, J. Siegel, and Z. Kolska, Appl. Phys. A 102, 747 (2011).CrossRefGoogle Scholar
  15. 15.
    F. Ma, M.H. Hong, and L.S. Tan, Appl. Phys. A 93, 907 (2008).CrossRefGoogle Scholar
  16. 16.
    Y. Song and H.E. Elsayed-Ali, Appl. Surf. Sci. 256, 5961 (2010).CrossRefGoogle Scholar
  17. 17.
    J. Siegel, J. Heitz, and V. Švorčík, Surf. Coat. Technol. 206, 517 (2011).CrossRefGoogle Scholar
  18. 18.
    J. Tuma, O. Lyutakov, I. Huttel, J. Siegel, J. Heitz, Y. Kalachyova, and V. Švorčík, J. Mater. Sci. 48, 900 (2013).CrossRefGoogle Scholar
  19. 19.
    P. Buffat, J. Borel, Phys. Rev. A 13(6) (1976)Google Scholar
  20. 20.
    P.R. Couchman and W.A. Jesser, Nature 269, 481 (1977).CrossRefGoogle Scholar
  21. 21.
    T. Karakouz, A.B. Tesler, T.A. Bendikov, A. Vaskevich, and I. Rubinstein, Adv. Mater. 20, 3893 (2008).CrossRefGoogle Scholar
  22. 22.
    M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, Cryst. Growth Des. 10, 587 (2010).CrossRefGoogle Scholar
  23. 23.
    V.L. De Los Santos, D. Lee, J. Seo, F.L. Leon, D.A. Bustamante, S. Suzuki, Y. Majima, T. Mitrelias, A. Ionescu, and C.H. Barnes, Surf. Sci. 603(19), 2978 (2009)Google Scholar
  24. 24.
    V. Svorcık, O. Kvıtek, J. Rıha, Z. Kolska, and J. Siegel, Vacuum 86, 729 (2012).CrossRefGoogle Scholar
  25. 25.
    H. Liu, X. Zhang, and Z. Gao, Photon. Nanostruct. Fund. Appl. 8, 131 (2010).CrossRefGoogle Scholar
  26. 26.
    X. Zhang, H. Liu, and S. Feng, Nanotechnology 20, 425303 (2009).CrossRefGoogle Scholar
  27. 27.
    N.D. Lai, W.P. Liang, J.H. Lin, C.C. Hsu, and C.H. Lin, Opt. Express 13, 9605 (2005).CrossRefGoogle Scholar
  28. 28.
    N.D. Lai, J.H. Lin, Y.Y. Huang, and C.C. Hsu, Opt. Express 14, 10746 (2006).CrossRefGoogle Scholar
  29. 29.
    N.D. Lai, C.C. Hsu, D.B. Do, J.H. Lin, T.S. Zheng, W.P. Liang, Y.Y. Huang, and Y. Di Huang, Fabrication of Two and Three-Dimensional Photonic Crystals and Photonic Quasi Crystals by Interference Technique (INTECH Open Access Publisher, 2011), p. 255Google Scholar
  30. 30.
    Y. Chu, E. Schonbrun, T. Yang, and K.B. Crozier, Appl. Phys. Lett. 93, 181108 (2008).CrossRefGoogle Scholar
  31. 31.
    A.D. Humphrey and W.L. Barnes, Phys. Rev. B 90(7) (2014)Google Scholar
  32. 32.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Nature 391, 667 (1998).CrossRefGoogle Scholar
  33. 33.
    G. Si, X. Jiang, J. Lv, Q. Gu, and F. Wang, Nanoscale Res. Lett. 9, 1 (2014).CrossRefGoogle Scholar
  34. 34.
    X. Zhang, B. Sun, R.H. Friend, H. Guo, D. Nau, and H. Giessen, Nano Lett. 6, 651 (2006).CrossRefGoogle Scholar
  35. 35.
    X. Zhang, H. Liu, and Z. Pang, Plasmonics 6, 273 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Minh Thanh Do
    • 1
    • 2
    Email author
  • Quang Cong Tong
    • 1
    • 3
  • Mai Hoang Luong
    • 1
  • Alexander Lidiak
    • 1
  • Isabelle Ledoux-Rak
    • 1
  • Ngoc Diep Lai
    • 1
  1. 1.Laboratoire de Photonique Quantique et MoléculaireEcole Normale Supérieure de Cachan, UMR 8537, CentraleSupélec, CNRS, Université Paris-SaclayCachanFrance
  2. 2.Hanoi National University of EducationHanoiVietnam
  3. 3.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations