Influence of Boron Substitution on Conductance of Pyridine- and Pentane-Based Molecular Single Electron Transistors: First-Principles Analysis


We have investigated the modeling of boron-substituted molecular single-electron transistor (SET), under the influence of a weak coupling regime of Coulomb blockade between source and drain metal electrodes. The SET consists of a single organic molecule (pyridine/pentane/1,2-azaborine/butylborane) placed over the dielectric, with boron (B) as a substituent. The impact of B-substitution on pyridine and pentane molecules in isolated, as well as SET, environments has been analyzed by using density functional theory-based ab initio packages Atomistix toolkit-Virtual NanoLab and Gaussian03. The performance of proposed SETs was analyzed through charging energies, total energy as a function of gate potential and charge stability diagrams. The analysis confirms that the B-substituted pentane (butylborane) and the boron-substituted pyridine (1,2-azaborine) show remarkably improved conductance in SET environment in comparison to simple pyridine and pentane molecules.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. Skotnicki, J. Hutchby, T.J. King, H.S. Wong, and F. Boeuf, IEEE Circuits Devices Mag. 21, 16 (2005).

    Article  Google Scholar 

  2. 2.

    O. Kumar and M. Kaur, Int. J. VLSI Design Commun. Syst. 1, 24 (2010).

    Article  Google Scholar 

  3. 3.

    S.G. Lias, J.B. Bartmess, J.E. Liebman, J.L. Holmes, R.D. Levin, and W.G. Mallard, J. Phys. Chem. Ref. Data 17, 1 (1988).

    Article  Google Scholar 

  4. 4.

    J.B. Neaton, M.S. Hybertsen, and S.G. Louie, Phys. Rev. Lett. 97, 216405 (2006).

    Article  Google Scholar 

  5. 5.

    J.S. Seldenthuis, H.S.J. van der Zant, M.A. Ratner, and J.M. Thijssen, ACS Nano 2, 1445 (2010).

    Article  Google Scholar 

  6. 6.

    S. Datta, “ECE 453 Lecture 39: Coulomb Blockade” (2004). Accessed 5 Nov 2014.

  7. 7.

    A. Sahafi, M.H. Moaiyeri, K. Navi, and O. Hashemipour, J. Comput. Theor. Nanosci. 10, 1171 (2013).

    Article  Google Scholar 

  8. 8.

    W. Wei, H. Jie, and L. Floriana, IEEE Trans. Nanotechnol. 12, 57 (2013).

    Article  Google Scholar 

  9. 9.

    Y.D. Guo, Y. Xiao-Hong, and X. Yang, J. Phys. Chem. C 116, 21609 (2012).

    Article  Google Scholar 

  10. 10.

    S.J. Ray and R. Chowdhury, J. Appl. Phys. 116, 034307 (2014).

    Article  Google Scholar 

  11. 11.

    S.J. Ray, J. Appl. Phys. 118, 034303 (2015).

    Article  Google Scholar 

  12. 12.

    S.J. Ray, Sens. Actuator B Chem. 222, 492 (2016).

    Article  Google Scholar 

  13. 13.

    S.J. Ray, J. Appl. Phys. 116, 244307 (2014).

    Article  Google Scholar 

  14. 14.

    C. Wasshuber, Computational Single-Electronics (New York: Springer, 2001). doi:10.1007/978-3-7091-6257-6.

    Book  Google Scholar 

  15. 15.

    T.A. Fulton and G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

    Article  Google Scholar 

  16. 16.

    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B. 65, 165401 (2002).

    Article  Google Scholar 

  17. 17.

    K. Stokbro, J. Phys. Chem. C 114, 20461 (2010).

    Article  Google Scholar 

  18. 18.

    K. Kaasbjerg and K. Flensberg, Nano Lett. 8, 3809 (2008).

    Article  Google Scholar 

  19. 19.

    Atomistix Toolkit-Virtual Nanolab, Quantum wise A/S. Accessed 15 Nov 2014.

  20. 20.

    J.C. Riviere, Appl. Phys. Lett. 8, 172 (1966).

    Article  Google Scholar 

  21. 21.

    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  22. 22.

    D. Pawel, Ann. Phys. 152, 239 (1984).

    Article  Google Scholar 

  23. 23.

    M. Brandbyge, K. Nobuhiko, and T. Masaru, Phys. Rev. B 60, 17064 (1999).

    Article  Google Scholar 

  24. 24.

    Z. Yang, B. Wen, R. Melnik, S. Yao, and T. Li, Appl. Phys. Lett. 95, 192101 (2009).

    Article  Google Scholar 

  25. 25.

    H. Liu, W. Ni, J. Zhao, N. Wang, Y. Guo, T. Taketsugu, M. Kiguchi, and K. Murakoshi, J. Chem. Phys. 130, 244501 (2009).

    Article  Google Scholar 

  26. 26.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, and H. Nakai, Gaussian 03, Revision B.02 (Pittsburgh: Gaussian, Inc, 2003).

    Google Scholar 

  27. 27.

    H.M. Rosenstock, K. Drax, B.W. Steiner, and J.T. Herron, Ion Energetics Data in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, eds. P.J. Linstrom and W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 2014) p. 20899. http://web For Pyridine: cgi?ID=C110861&Units=SI&Mask=20#Ion-Energetics; For Pentane: Units=SI&Mask=20#Ion-Energetics.

  28. 28.

    A. Srivastava, B. Santhibhushan, and P. Dobwal, Int. J. Nanosci. 12, 1350045 (2013).

    Article  Google Scholar 

  29. 29.

    A. Srivastava, B. SanthiBhushan, and P. Dobwal, Appl. Nanosci. 4, 263 (2013).

    Article  Google Scholar 

  30. 30.

    A. Srivastava, K. Kaur, R. Sharma, P. Chauhan, U.S. Sharma, and C. Pathak, J. Electron. Mater. 43, 3449 (2014).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Anurag Srivastava.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Santhibhushan, B., Sharma, V. et al. Influence of Boron Substitution on Conductance of Pyridine- and Pentane-Based Molecular Single Electron Transistors: First-Principles Analysis. Journal of Elec Materi 45, 2233–2241 (2016).

Download citation


  • Density functional theory (DFT)
  • boron (B)
  • single-electron transistor (SET)
  • 1,2-azaborine (C4H5NB)
  • butylborane (C4H12B)
  • charge stability diagram
  • threshold voltage (V th)
  • natural bond orbital (NBO)