Advertisement

Journal of Electronic Materials

, Volume 45, Issue 4, pp 2233–2241 | Cite as

Influence of Boron Substitution on Conductance of Pyridine- and Pentane-Based Molecular Single Electron Transistors: First-Principles Analysis

  • Anurag SrivastavaEmail author
  • B. Santhibhushan
  • Vikash Sharma
  • Kamalpreet Kaur
  • Md. Shahzad Khan
  • Madura Marathe
  • Abir De Sarkar
  • Mohd. Shahid Khan
Article

Abstract

We have investigated the modeling of boron-substituted molecular single-electron transistor (SET), under the influence of a weak coupling regime of Coulomb blockade between source and drain metal electrodes. The SET consists of a single organic molecule (pyridine/pentane/1,2-azaborine/butylborane) placed over the dielectric, with boron (B) as a substituent. The impact of B-substitution on pyridine and pentane molecules in isolated, as well as SET, environments has been analyzed by using density functional theory-based ab initio packages Atomistix toolkit-Virtual NanoLab and Gaussian03. The performance of proposed SETs was analyzed through charging energies, total energy as a function of gate potential and charge stability diagrams. The analysis confirms that the B-substituted pentane (butylborane) and the boron-substituted pyridine (1,2-azaborine) show remarkably improved conductance in SET environment in comparison to simple pyridine and pentane molecules.

Keywords

Density functional theory (DFT) boron (B) single-electron transistor (SET) 1,2-azaborine (C4H5NB) butylborane (C4H12B) charge stability diagram threshold voltage (Vthnatural bond orbital (NBO) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Skotnicki, J. Hutchby, T.J. King, H.S. Wong, and F. Boeuf, IEEE Circuits Devices Mag. 21, 16 (2005).CrossRefGoogle Scholar
  2. 2.
    O. Kumar and M. Kaur, Int. J. VLSI Design Commun. Syst. 1, 24 (2010).CrossRefGoogle Scholar
  3. 3.
    S.G. Lias, J.B. Bartmess, J.E. Liebman, J.L. Holmes, R.D. Levin, and W.G. Mallard, J. Phys. Chem. Ref. Data 17, 1 (1988).CrossRefGoogle Scholar
  4. 4.
    J.B. Neaton, M.S. Hybertsen, and S.G. Louie, Phys. Rev. Lett. 97, 216405 (2006).CrossRefGoogle Scholar
  5. 5.
    J.S. Seldenthuis, H.S.J. van der Zant, M.A. Ratner, and J.M. Thijssen, ACS Nano 2, 1445 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Datta, “ECE 453 Lecture 39: Coulomb Blockade” (2004). http://nanohub.org/resources/756. Accessed 5 Nov 2014.
  7. 7.
    A. Sahafi, M.H. Moaiyeri, K. Navi, and O. Hashemipour, J. Comput. Theor. Nanosci. 10, 1171 (2013).CrossRefGoogle Scholar
  8. 8.
    W. Wei, H. Jie, and L. Floriana, IEEE Trans. Nanotechnol. 12, 57 (2013).CrossRefGoogle Scholar
  9. 9.
    Y.D. Guo, Y. Xiao-Hong, and X. Yang, J. Phys. Chem. C 116, 21609 (2012).CrossRefGoogle Scholar
  10. 10.
    S.J. Ray and R. Chowdhury, J. Appl. Phys. 116, 034307 (2014).CrossRefGoogle Scholar
  11. 11.
    S.J. Ray, J. Appl. Phys. 118, 034303 (2015).CrossRefGoogle Scholar
  12. 12.
    S.J. Ray, Sens. Actuator B Chem. 222, 492 (2016).CrossRefGoogle Scholar
  13. 13.
    S.J. Ray, J. Appl. Phys. 116, 244307 (2014).CrossRefGoogle Scholar
  14. 14.
    C. Wasshuber, Computational Single-Electronics (New York: Springer, 2001). doi: 10.1007/978-3-7091-6257-6.CrossRefGoogle Scholar
  15. 15.
    T.A. Fulton and G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987).CrossRefGoogle Scholar
  16. 16.
    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B. 65, 165401 (2002).CrossRefGoogle Scholar
  17. 17.
    K. Stokbro, J. Phys. Chem. C 114, 20461 (2010).CrossRefGoogle Scholar
  18. 18.
    K. Kaasbjerg and K. Flensberg, Nano Lett. 8, 3809 (2008).CrossRefGoogle Scholar
  19. 19.
    Atomistix Toolkit-Virtual Nanolab, Quantum wise A/S. http://quantumwise.com. Accessed 15 Nov 2014.
  20. 20.
    J.C. Riviere, Appl. Phys. Lett. 8, 172 (1966).CrossRefGoogle Scholar
  21. 21.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  22. 22.
    D. Pawel, Ann. Phys. 152, 239 (1984).CrossRefGoogle Scholar
  23. 23.
    M. Brandbyge, K. Nobuhiko, and T. Masaru, Phys. Rev. B 60, 17064 (1999).CrossRefGoogle Scholar
  24. 24.
    Z. Yang, B. Wen, R. Melnik, S. Yao, and T. Li, Appl. Phys. Lett. 95, 192101 (2009).CrossRefGoogle Scholar
  25. 25.
    H. Liu, W. Ni, J. Zhao, N. Wang, Y. Guo, T. Taketsugu, M. Kiguchi, and K. Murakoshi, J. Chem. Phys. 130, 244501 (2009).CrossRefGoogle Scholar
  26. 26.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, and H. Nakai, Gaussian 03, Revision B.02 (Pittsburgh: Gaussian, Inc, 2003).Google Scholar
  27. 27.
    H.M. Rosenstock, K. Drax, B.W. Steiner, and J.T. Herron, Ion Energetics Data in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, eds. P.J. Linstrom and W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 2014) p. 20899. http://web book.nist.gov. For Pyridine: http://webbook.nist.gov/cgi/cbook. cgi?ID=C110861&Units=SI&Mask=20#Ion-Energetics; For Pentane: http://webbook.nist.gov/cgi/cbook.cgi?ID=C109660& Units=SI&Mask=20#Ion-Energetics.
  28. 28.
    A. Srivastava, B. Santhibhushan, and P. Dobwal, Int. J. Nanosci. 12, 1350045 (2013).CrossRefGoogle Scholar
  29. 29.
    A. Srivastava, B. SanthiBhushan, and P. Dobwal, Appl. Nanosci. 4, 263 (2013).CrossRefGoogle Scholar
  30. 30.
    A. Srivastava, K. Kaur, R. Sharma, P. Chauhan, U.S. Sharma, and C. Pathak, J. Electron. Mater. 43, 3449 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Anurag Srivastava
    • 1
    Email author
  • B. Santhibhushan
    • 1
  • Vikash Sharma
    • 1
    • 2
  • Kamalpreet Kaur
    • 1
    • 2
  • Md. Shahzad Khan
    • 1
  • Madura Marathe
    • 3
  • Abir De Sarkar
    • 4
  • Mohd. Shahid Khan
    • 5
  1. 1.Advanced Materials Research Group, CNT LabABV-Indian Institute of Information Technology and ManagementGwaliorIndia
  2. 2.VLSI Design LaboratoryABV-Indian Institute of Information Technology and ManagementGwaliorIndia
  3. 3.Electronics and Communication EngineeringMaulana Azad National Institute of TechnologyBhopalIndia
  4. 4.Institute of Nano Science and TechnologyMohaliIndia
  5. 5.Department of PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations