Skip to main content
Log in

Preparation of g-C3N4/Ta2O5 Composites with Enhanced Visible-Light Photocatalytic Activity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

g-C3N4/Ta2O5 composites have been synthesized by a facile route in which mixtures of Ta2O5 and urea are heated at various temperatures of 450°C, 500°C, and 550°C. The obtained materials (denoted as CN/TaO-T, where T is the heating temperature) were characterized using x-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, diffuse-reflectance ultraviolet–visible (UV–Vis) spectroscopy, thermogravimetric analysis, and x-ray photoelectron spectroscopy. The results show that the as-prepared composites are in orthorhombic Ta2O5 phase coated by g-C3N4. The photocatalytic activity of the composites was evaluated by photodegradation of methylene blue under visible light. Among the three materials, CN/TaO-500 exhibited the highest photocatalytic activity. The improved photocatalytic activity of the g-C3N4/Ta2O5 composites is attributed to the presence of g-C3N4 in the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.V.L. Reddy and K.H. Kim, J. Hazard. Mater. 285, 325 (2015).

    Article  Google Scholar 

  2. D. Sudha and P. Sivakumar, Chem. Eng. Process. 97, 112 (2015)

    Article  Google Scholar 

  3. R.M. Mohamed, D.L. McKinney, and W.M. Sigmun, Mater. Sci. Eng. R 73, 1 (2012).

    Article  Google Scholar 

  4. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, and R. Naidu, Appl. Catal. A-Gen. 359, 25 (2009).

    Article  Google Scholar 

  5. S.P. Adhikari, Z.D. Hood, K.L. More, I. Ivanov, L. Zhang, M. Gross, and A. Lachgar, RSC Adv. 5, 54998 (2015).

    Article  Google Scholar 

  6. M. Sharma, D. Das, A. Baruah, A. Jain, and A.K. Ganguli, Langmuir 30, 3199 (2014).

    Article  Google Scholar 

  7. M. Higashi, K. Domen, and R. Abe, J. Am. Chem. Soc. 134, 6968 (2012).

    Article  Google Scholar 

  8. M.-Y. Tsang, N.E. Pridmore, L.J. Gillie, Y.-H. Chou, R. Brydson, and R.E. Douthwaite, Adv. Mater. 24, 3406 (2012).

    Article  Google Scholar 

  9. R. Abe, M. Higashi, and K. Domen, J. Am. Chem. Soc. 132, 11828 (2010).

    Article  Google Scholar 

  10. Y. Wang and X. Wang, M. Antonietti. Angew. Chem. Int. Ed. 51, 68 (2012).

    Article  Google Scholar 

  11. S.C. Yan, Z.S. Li, and Z.G. Zou. Langmuir 25, 10397 (2009).

    Article  Google Scholar 

  12. L. Ge and C.C. Han, Appl. Catal. B-Environ. 117, 268 (2012).

    Article  Google Scholar 

  13. G.Z. Liao, S. Chen, X. Quan, H.T. Yu, and H.M. Zhao, J. Mater. Chem. 22, 2721 (2012).

    Article  Google Scholar 

  14. C.S. Pan, J. Xu, Y.J. Wang, D. Li, and Y.F. Zhu, Adv. Funct. Mater. 22, 1518 (2012).

    Article  Google Scholar 

  15. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, and G. Cai, Dalton Trans. 42, 8606 (2013).

    Article  Google Scholar 

  16. K. Sridharan, E. Jang, and J.T. Park, Appl. Catal. B-Environ. 142–143, 718 (2013).

    Article  Google Scholar 

  17. T.D. An, D.N.T. Xuan, H.N. Phi, N.N.T. Viet, S.-J. Kim, and V. Vo, Bull. Korean Chem. Soc. 35, 1794 (2014).

    Article  Google Scholar 

  18. Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, and M. Huo, Appl. Catal. B-Environ. 142–143, 828 (2013).

    Article  Google Scholar 

  19. L. Fang, H. Ohfuji, T. Shinmei, and T. Irifune, Diam. Relat. Mater. 20, 819 (2011).

    Article  Google Scholar 

  20. S.C. Yan, Z.S. Li, and Z.G. Zou, Langmuir 26, 3894 (2010).

    Article  Google Scholar 

  21. S.C. Yan, S.B. Lv, Z.S. Li, and Z.G. Zou, Dalton Trans. 39, 1488 (2010).

    Article  Google Scholar 

  22. Y.W. Zhang, J.H. Liu, G. Wu, and W. Chen, Nanoscale 4, 5300 (2012).

    Article  Google Scholar 

  23. O. Kerrec, D. Devilliers, H. Groult, and P. Marcus, Mater. Sci. Eng. B 55, 134 (1998).

    Article  Google Scholar 

  24. D. Mitoraj and H. Kisch, Chem. Eur. J. 16, 261 (2010).

    Article  Google Scholar 

  25. T. Sreethawong, S. Ngamsinlapasathian, Y. Suzuki, and S. Yoshikawa, J. Mol. Catal. A-Chem. 235, 1 (2005).

    Article  Google Scholar 

  26. J. Xu, W. Meng, Y. Zhang, L. Li, and C. Guo, Appl. Catal. B-Environ. 107, 355 (2011).

    Article  Google Scholar 

  27. X. Xiao, R. Hu, C. Liu, C. Xing, C. Qian, X. Zuo, J. Nan, and L. Wang, Appl. Catal. B-Environ. 140–141, 433 (2013).

    Article  Google Scholar 

  28. D.F. Ollis, Environ. Sci. Technol. 19, 480 (1985).

    Article  Google Scholar 

  29. A. Fernandez, G. Lassaletta, V.M. Jimenez, A. Justo, A.R. Gonzalez-Elipe, J.M. Jerrmann, H. Tahiri, and Y. Ait-Ichou, Appl. Catal. B-Environ. 7, 49 (1995).

    Article  Google Scholar 

  30. L. Ge, C.C. Han, and J. Liu, Appl. Catal. B-Environ. 108, 100 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (NRF-2015R1A2A2A01004275).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vien Vo or Sung-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, V., Van Kim, N., Nga, N.T.V. et al. Preparation of g-C3N4/Ta2O5 Composites with Enhanced Visible-Light Photocatalytic Activity. J. Electron. Mater. 45, 2334–2340 (2016). https://doi.org/10.1007/s11664-015-4280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4280-9

Keywords

Navigation