Skip to main content
Log in

Enhanced Room Temperature Ferromagnetism by Fe Doping in Zn0.96Cu0.04O Diluted Magnetic Semiconductors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zn0.96−x Cu0.04Fe x O (0 ≤ x ≤ 0.04) nanoparticles synthesized via the sol–gel technique had a hexagonal wurtzite ZnO structure without any Fe/Cu-related secondary phases. The crystallite size was reduced from Fe = 0% (23 nm) to Fe = 4% (16 nm) due to the suppression of grain surface growth by foreign impurities. Doping of higher Fe concentrations into Zn-Cu-O suppressed the ultra-violet (UV) emission band and balanced the defect-related visible emissions. The decrease of the UV and green emission intensity ratio (I UV/I green) and the UV and blue emission intensity ratio (I UV/I blue) in photoluminescence spectra implied an increase of defect states with the increase of Fe concentrations. All the samples showed clear room temperature ferromagnetism. The saturation magnetization was increased by Fe co-doping which was attributed to the interaction between Fe-Fe ions. X-ray photoelectron spectra confirmed the absence of secondary phases like Fe3O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H.F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, and U.V. Waghmare, Phys. Rev. Lett. 94, 187204 (2005).

    Article  Google Scholar 

  2. S.K. Mandal, A.K. Das, T.K. Nath, and D. Karmakar, Appl. Phys. Lett. 89, 144105 (2006).

    Article  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Clibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  Google Scholar 

  4. K. Sato and H. Katayama-Yosida, Jpn. J. Appl. Phys. 39, L555 (2000).

    Article  Google Scholar 

  5. H.L. Liu, J.H. Yang, Y.J. Zhang, Y.X. Wang, M.B. Wei, D.D. Wang, L.Y. Zhao, J.H. Lang, and M. Gao, J. Mater. Sci. 20, 628 (2009).

    Google Scholar 

  6. X. Xu, C. Cao, and Z. Chen, J. Magn. Magn. Mater. 323, 1886 (2011).

    Article  Google Scholar 

  7. N.A. Spaldin, Phys. Rev. B 69, 125201 (2004).

    Article  Google Scholar 

  8. C.O. Kim, S. Kim, H.T. Oh, S.H. Choi, Y. Shon, S. Lee, H.N. Hwang, and C.C. Hwang, Phys. B 405, 4678 (2010).

    Article  Google Scholar 

  9. P.K. Sharma, R.K. Dutta, and A.C. Pandey, J. Magn. Magn. Mater. 321, 4001 (2009).

    Article  Google Scholar 

  10. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, S.N. Heo, and B.H. Koo, Acta Mater. 60, 5190 (2012).

    Article  Google Scholar 

  11. H. Liu, J. Yang, Z. Hua, Y. Liu, L. Yang, Y. Zhang, and J. Cao, Mater. Chem. Phys. 125, 656 (2011).

    Article  Google Scholar 

  12. M. Ashokkumar and S. Muthukumaran, Super Lattices Microstruct. 69, 53 (2014).

    Article  Google Scholar 

  13. S. Fujihara, A. Suzuki, and T. Kimura, J. Appl. Phys. 94, 2411 (2003).

    Article  Google Scholar 

  14. P.K. Sharma, R.K. Dutta, and A.C. Pandey, J. Magn. Magn. Mater. 321, 3457 (2009).

    Article  Google Scholar 

  15. A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, and B.M. Nagabhushana, J. Alloys Compd. 509, 5349 (2011).

    Article  Google Scholar 

  16. M. Deepa, N. Bahadur, A.K. Srivastava, P. Chaganti, and K.N. Sood, J. Phys. Chem. Solids 70, 291 (2009).

    Article  Google Scholar 

  17. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Prog. Mater Sci. 50, 293 (2005).

    Article  Google Scholar 

  18. S.B. Zhang, S.H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).

    Article  Google Scholar 

  19. K. Samanta, A.K. Arora, and R.S. Katiyar, J. Appl. Phys. 110, 043523 (2011).

    Article  Google Scholar 

  20. D.M. Song, T.H. Wang, and J.C. Li, J. Mol. Model. 18, 5035 (2012).

    Article  Google Scholar 

  21. C.H. Xia, C.G. Hu, C.H. Hu, Z. Ping, and F. Wang, Bull. Mater. Sci. 34, 1083 (2011).

    Article  Google Scholar 

  22. T.S. Herng, S.P. Lau, S.F. Yu, J.S. Chen, and K.S. Teng, J. Magn. Magn. Mater. 315, 107 (2007).

    Article  Google Scholar 

  23. P. Cao, D.X. Zhao, D.Z. Shen, J.Y. Zhang, Z.Z. Zhang, and Y. Bai, Appl. Surf. Sci. 255, 3639 (2009).

    Article  Google Scholar 

  24. N.H. Hong, J. Sakai, and V. Brize, J. Phys. 19, 036219 (2007).

    Google Scholar 

  25. Y. Lin, D.M. Jiang, F. Lin, W.Z. Shi, and X.M. Ma, J. Alloys Compd. 436, 30 (2007).

    Article  Google Scholar 

  26. C. Xia, C. Hu, Y. Tian, P. Chen, B. Wan, and J. Xu, Solid State Sci. 13, 388 (2011).

    Article  Google Scholar 

  27. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, ed. J. Chastain (Eden Prairie: Perkin-Elmer, 1992), p. 87.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumaran, S., Ashokkumar, M. Enhanced Room Temperature Ferromagnetism by Fe Doping in Zn0.96Cu0.04O Diluted Magnetic Semiconductors. J. Electron. Mater. 45, 976–982 (2016). https://doi.org/10.1007/s11664-015-4253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4253-z

Keywords

Navigation