Skip to main content
Log in

Analysis of the Performance of Thermoelectric Modules Under Concentrated Radiation Heat Flux

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The concentration of solar radiation by either a lens or a mirror is one of the options for practical utilisation of light to obtain higher temperatures. However, it is difficult to maintain high temperatures on the hot side of the module due to solar diurnal motion. This study evaluates the influence of the thermoelectric (TE) output by optical light concentration. Three-dimensional partial differential equations describing heat balance and TE phenomena were simultaneously solved by applying numerical methods, and the temperature distribution in the whole TE module as well as the current density were simulated. It was shown that the three models of light concentration on a single TE module (BiTe-based, four legs having dimensions of 10 mm × 10 mm × 10 mm) generate a similar output in the external load. This happens because the long leg becomes a large thermal resistance, and because the alumina plate (1 mm thick) with a high thermal conductivity covers the top of the TE modules. The homogenised temperature at the hot junctions generates a similar output in all three models when the cold terminals were kept at constant temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Goldsmid, J.E. Giutronich, and M.M. Kaila, Sol. Energy 24, 435 (1980).

    Article  Google Scholar 

  2. J. Chen, J. Appl. Phys. 79, 2717 (1996).

    Article  Google Scholar 

  3. N. Vatcharasathien, J. Hirunlabh, J. Khedari, and M. Daguenet, Intern. J. Sustain. Energy 24, 115 (2005).

    Article  Google Scholar 

  4. C. Suter, P. Tomeš, A. Weidenkaff, and A. Steinfeld, Materials 3, 2735 (2010).

    Article  Google Scholar 

  5. R.R. Amatya and R.J. Ram, J. Electron. Mater. 39, 1725 (2010).

    Article  Google Scholar 

  6. P. Li, L. Cai, P. Zhai, X. Tang, Q. Zhang, and M. Niino, J. Electron. Mater. 39, 1522 (2010).

    Article  Google Scholar 

  7. D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater., 10, 532 (2011)

  8. C. Suter, P. Tomeš, A. Weidenkaff, and A. Steinfeld, Sol. Energy 85, 1511 (2011).

    Article  Google Scholar 

  9. K. McEnaney, D. Kraemer, Z. Ren, and G. Chen, J. Appl. Phys. 110, 074502 (2011).

    Article  Google Scholar 

  10. J. Xiao, T. Yang, P. Li, P. Zhai, and Q. Zhang, Appl. Energy 93, 33 (2012).

    Article  Google Scholar 

  11. R.O. Suzuki, A. Nakagawa, H. Sui, and T. Fujisaka, J. Electron. Mater. 42, 1960 (2013).

    Article  Google Scholar 

  12. K.O. Ito, H. Sui, H. Hakozaki, H. Kinoshita, and R.O. Suzuki, J. Electron. Mater. 43, 2086 (2014).

    Article  Google Scholar 

  13. R.O. Suzuki, T. Fujisaka, K. Ito, X. Meng, and H.-t. Sui, J. Electron. Mater. 44, 348 (2015).

    Article  Google Scholar 

  14. E.E. Antonova and D.C. Looan, in Proceedings of the 24th International Conference on Thermoelectrics (ICT2005), (19–23 June 2005) The Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ (2005), p. 200

  15. M. Chen, L.A. Rosendahl, and T. Condra, Inter. J. Heat Mass Transf. 54, 345 (2011).

    Article  Google Scholar 

  16. T. Fujisaka and R.O. Suzuki, in Proceedings of the IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, (25–28 Oct, 2012, Montreal, Canada), The Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, (2012), p. 5868.

  17. B. Jang, S. Han, and J.-Y. Kim, Microelectron Eng. 88, 775 (2011).

    Article  Google Scholar 

  18. R.O. Suzuki, Y. Sasaki, T. Fujisaka, and M. Chen, J. Electron. Mater. 41, 1766–1770 (2012).

    Article  Google Scholar 

  19. R.O. Suzuki, Y. Sasaki, T. Fjisaka, and M. Chen, in Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, (25–28 Oct 2012, Montreal, Canada), The Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, (2012), p. 5873.

  20. X. Meng, T. Fujisaka, K.O. Ito, and R.O. Suzuki, Mater. Trans. 55, 1219 (2014).

    Article  Google Scholar 

  21. X. Meng and R.O. Suzuki, J. Electron. Mater. 44, 1469 (2015).

    Article  Google Scholar 

  22. T. Fujisaka, H. Sui, and R.O. Suzuki, J. Electron. Mater. 42, 1688 (2013).

    Article  Google Scholar 

  23. J.-Y. Jang and Y.-C. Tsai, Appl. Therm. Engg. 51, 677 (2013).

    Article  Google Scholar 

  24. H. Tian, X. Sun, Q. Jia, X. Liang, G. Shu, and X. Wang, Energy 84, 121 (2015).

    Article  Google Scholar 

  25. K. Ono and R.O. Suzuki, J. Met., 49 (1998).

  26. R.O. Suzuki and D. Tanaka, J. Power Sources 122, 201 (2003).

    Article  Google Scholar 

  27. The Japan Society of Mechanical Engineering (JSME), “Standard values of heat transfer engineering”, ver.4, (Tokyo: JSME, 1986).

  28. European Thermodynamics Limited, Datasheet: Thermoelectric Power Generator (GM200-71-14-16) (Leicester, UK, 2014).

  29. Y. Mori, Handbook of Thermoelctric Conversion Technology”, ed. T. Kajikawa (Tokyo: NTS, 2008) pp. 400–405.

Download references

Acknowledgements

The authors thank Dr. Xiang-ning Meng at Northeastern University, China, Dr. Ryoji Funahashi at AIST Kansai, Japan, Dr. Shungo Natsui and Prof. Dr. Krzysztof Fitzner at Hokkaido University, for their kind advices. The program used here was originally coded by Dr. Min Chen at Aalborg University, Denmark, and Mr. Takeyuki Fujisaka at Hokkaido University (now at Nippon Steel & Sumitomo Metal Co., Japan). It was modified to adjust with this paper. This work is financially supported in part by Grant-in-Aid for Challenging Exploratory Research (JSPS, Nos. 26630490 and 24656574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke O. Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R. ., Ito, K. . & Oki, S. Analysis of the Performance of Thermoelectric Modules Under Concentrated Radiation Heat Flux. J. Electron. Mater. 45, 1827–1835 (2016). https://doi.org/10.1007/s11664-015-4237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4237-z

Keywords

Navigation