Abstract
We report the effects of oxygen mixing percentage (OMP) and annealing temperature on surface morphology, optical, dielectric and electrical properties of (Mg0.95Ni0.05)TiO3 (MNT) thin films deposited onto amorphous SiO2 and platinized silicon (Pt/TiO2/SiO2/Si) substrates by radio frequency (RF) magnetron sputtering. The annealed films exhibited the highest refractive index, 2.05, at 600 nm with an optical bandgap value of 4.33 eV. The metal–insulator–metal (MIM) capacitors of the MNT thin films were fabricated under different OMPs and the dielectric properties were analyzed by using Maxwell–Wagner two-layer theory and Koop’s phenomenological theory. MNT films prepared under 50% OMP displayed the highest dielectric constant (11.21) and minimum loss tangent (0.0114) at 1 MHz. The impedance spectroscopy of the films deposited under 50% OMP has been studied. The Nyquist plots of MNT films revealed two semi-circular arcs and is explained on the basis of an equivalent circuit model. The frequency-dependent alternative current (AC) conductivity followed the Jonscher’s power law. The activation energies are calculated using the Arrhenius relationship. The hopping frequency of the charged species was calculated, and the correlation between AC and direct current (DC) conduction mechanisms established in accordance with the Barton–Nakajima–Namikawa (BNN) relationship.
This is a preview of subscription content, access via your institution.
References
H. Sreemoolanadhan and M.T. Sebastian, Mater. Res. Bull. 30, 653 (1995).
R.J. Cava, W.F. Peck Jr., J.J. Krajewski, G.L. Reberts, and B.P. Barber, Appl. Phys. Lett. 70, 1396 (1997).
G.C. Ling, R.S. Withers, B.F. Cole, and N. Newman, IEEE T. Microw. Theory 42, 34 (1994).
S. George and M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164 (2010).
V.M. Ferreira, J.L. Baptista, S. Kamaba, and J. Petzdt, J. Mater. Sci. 28, 5894 (1993).
D. Pamu, K. Sudheendran, M.G. Krishna, K.C. James, and A.K. Bhatnagar, Thin Solid Films 517, 1587 (2009).
M. Ferraris, E. Verne, P. Appendino, C. Moisescu, A. Krejewski, A. Ravaglioli, and A. Piancastelli, Biomaterials 21, 765 (2000).
C.J. Brinker, G.W. Scherer, and J. Lee, J. Korean Phys. Soc. 32, 1417 (1998).
K.P. Surendran, A. Wu, P.M. Vilarinho, and V.M. Ferreira, J. Appl. Phys. 107, 114112 (2012).
T.S. Kumar, P. Gogoi, S. Thota, and D. Pamu, AIP Adv. 4, 067142 (2014).
P. Gogoi, T.S. Kumar, P. Sharma, and D. Pamu, J. Alloys Compd. 619, 527 (2015).
J.H. Sohn, Y. Inaguma, S.O. Yoon, M. Iton, T. Nakamura, and H.J. Kim, Jpn. J. Appl. Phys. 33, 5466 (1994).
R. Swanepoel, J. Phys. E 16, 1214 (1983).
H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
M. Dongol, Egypt. J. Sol. 25, 33 (2002).
R.D. Shannon, Acta Cryst. A32, 751 (1976).
K. Barmak, J. Kim, C.S. Kim, W.E. Archibald, G.S. Rohrer, A.D. Rollett, D. Kinderleherer, S. Ta Asan, H. Zhang, and D.J. Srolovitz, Scr. Mater. 54, 1059 (2006).
C.H. Wang, X.P. Jing, W. Feng, and J. Lu, J. Appl. Phys. 104, 034112 (2008).
P.J. Martin, H.A. Macleod, R.P. Netterfield, C.G. Pacey, and W.G. Sainty, Appl. Opt. 22, 178 (1983).
T.S. Kumar, R. Bhuyan, and D. Pamu, Appl. Surf. Sci. 264, 184 (2013).
P. Gupta and M. Rarakhiani, Open Nanosci. J. 3, 15 (2009).
V.M. Kugler, F. Soderlind, D. Music, U. Helmersson, J. Andreasson, and T. Lindback, J. Cryst. Growth 254, 400 (2003).
A.F. Khan, M. Mehmood, M. Aslam, and M. Ashraf, Appl. Surf. Sci. 256, 2252 (2010).
S. Upadhyay, O. Parkash, and D. Kumar, J. Phys. D 37, 1483 (2004).
B.K. Barick, R.N.P. Choudhary, and D.K. Pradhan, Mater. Chem. Phys. 132, 1007 (2012).
A.K. Jonscher, Nature 264, 673 (1977).
K. Funke, Prog. Solid State Chem. 22, 111 (1993).
A.K. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectric Press, 1983), p. 66.
B. Behera, P. Nayak, and R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007).
M.H. Lakhdar, B. Ouni, and M. Amlouk, Mater. Sci. Semicond. Proc. 19, 32 (2014).
C.R. Mariappan and G. Govindaraj, Solid State Ion. 176, 1311 (2005).
D.R. James, Optical Thin Films (Washington, DC: SPIE, 1987), p. 28.
D. Leng, L. Wu, H. Jiang, Y. Zhao, J. Zhang, W. Li, and L. Feng, Int. J. Photoenergy 235971, 6 (2012).
Q. Ye, P.Y. Liu, Z.F. Tang, and L. Zhai, Vacuum 81, 627 (2007).
H. Birey, J. Appl. Phys. 49, 2898 (1978).
J. Rout, R. Padhee, P.R. Das, and R.N.P. Choudhary, Adv. Appl. Phys. 1, 105 (2013).
M. George, S.S. Nair, K.A. Malini, P.A. Joy, and M.R. Anantharaman, J. Phys. D 40, 1593 (2007).
H. Mahamoud, B. Louati, F. Hlel, and K. Guidara, Bull. Mater. Sci. 34, 1069 (2011).
S.K. Barik, P.K. Mahapatra, and R.N.P. Choudhary, Appl. Phys. A 85, 199 (2006).
A. Shukla, R.N.P. Choudhary, and A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gogoi, P., Srinivas, P., Sharma, P. et al. Optical, Dielectric Characterization and Impedance Spectroscopy of Ni-Substituted MgTiO3 Thin Films. J. Electron. Mater. 45, 899–909 (2016). https://doi.org/10.1007/s11664-015-4209-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-015-4209-3
Keywords
- Thin films
- optical properties
- dielectric properties
- electrical conductivity
- impedance spectroscopy