Advertisement

Journal of Electronic Materials

, Volume 45, Issue 3, pp 1711–1729 | Cite as

Analysis of the Effect of Module Thickness Reduction on Thermoelectric Generator Output

  • F. P. BritoEmail author
  • L. Figueiredo
  • L. A. Rocha
  • A. P. Cruz
  • L. M. Goncalves
  • J. Martins
  • M. J. Hall
Article

Abstract

Conventional thermoelectric generators (TEGs) used in applications such as exhaust heat recovery are typically limited in terms of power density due to their low efficiency. Additionally, they are generally costly due to the bulk use of rare-earth elements such as tellurium. If less material could be used for the same output, then the power density and the overall cost per kilowatt (kW) of electricity produced could drop significantly, making TEGs a more attractive solution for energy harvesting of waste heat. The present work assesses the effect of reducing the amount of thermoelectric (TE) material used (namely by reducing the module thickness) on the electrical output of conventional bismuth telluride TEGs. Commercial simulation packages (ANSYS CFX and thermal–electric) and bespoke models were used to simulate the TEGs at various degrees of detail. Effects such as variation of the thermal and electrical contact resistance and the component thickness and the effect of using an element supporting matrix (e.g., eggcrate) instead of having air conduction in void areas have been assessed. It was found that indeed it is possible to reduce the use of bulk TE material while retaining power output levels equivalent to thicker modules. However, effects such as thermal contact resistance were found to become increasingly important as the active TE material thickness was decreased.

Keywords

Thermoelectric generators TEG modeling module geometry contact resistance thermal modeling power maximization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge Project ThinHarvest (FCOMP-01-0124-FEDER-041343/EXPL/EMS-ENE/ 1023/2013) and Postdoctoral Grant SFRH/BPD/89553/2012, financed by FEDER Funds through Programa Operacional Fatores de Competitividade— COMPETE and National Funds through PIDDAC and FCT—Fundação para a Ciência e a Tecnologia; Luso-American Foundation/National Science Foundation (FLAD/NSF) 2013 PORTUGAL—U.S. Research Networks Program, Project “Waste Exhaust Energy Recovery of Internal Combustion Engines”; and Hi-Z Technology, Inc., for the information supplied regarding their modules’ properties and performance.

References

  1. 1.
    J. Martins, Motores de Combustão Interna, 4th ed. (Porto: Publindustria, 2013).Google Scholar
  2. 2.
    Y. Dai, J. Wang, and L. Gao, Energy Convers. Manag. 50, 576 (2009). doi: 10.1016/j.enconman.2008.10.018.CrossRefGoogle Scholar
  3. 3.
    K.H. Kim, H.J. Ko, and S.W. Kim, Int. J. Mater., Mech. Manuf. 1, 41 (2013). doi: 10.7763/IJMMM.2013.V1.9.Google Scholar
  4. 4.
    H. Tuo, Int. J. Energy Res. 37, 1831 (2013). doi: 10.1002/er.3001.CrossRefGoogle Scholar
  5. 5.
    S. Obara, I. Tanno, S. Kito, A. Hoshi, and S. Sasaki, Int. J. Hydrogen Energy 33, 2289 (2008). doi: 10.1016/j.ijhydene.2008.02.035.CrossRefGoogle Scholar
  6. 6.
    P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R 67, 19 (2010). doi: 10.1016/j.mser.2009.10.001.CrossRefGoogle Scholar
  7. 7.
    G. Min and D.M. Rowe, IEEE Trans. Energy Conver. 22, 528 (2007). doi: 10.1109/TEC.2006.877375.CrossRefGoogle Scholar
  8. 8.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, and R.G. Yang, Adv. Mater. 19, 1043 (2007). doi: 10.1002/adma.200600527.CrossRefGoogle Scholar
  9. 9.
    M. Mori, T. Yamagami, M. Sorazawa, and T. Miyabe, SAE Int. J. Mater. Manuf. 4, 1268 (2011). doi: 10.4271/2011-01-1335.CrossRefGoogle Scholar
  10. 10.
    G.P. Meisner, 3rd Thermoelectric Applications Workshop, http://energy.gov/sites/prod/files/2014/03/f10/meisner.pdf (Accessed 12-11-2014) (Baltimore, MA, 2012)
  11. 11.
    BMW group corporate communications, Press Release: Looking for the next gram, https://www.press.bmwgroup. com/pressclub/p/pcgl/download.html?textId=144138&text AttachmentId=174413 (accessed 25-10-2012) (2011)
  12. 12.
    J. LaGrandeur, D. Crane, S. Hung, B. Mazar, and A. Eder, IEEE 25th International Conference. doi: 10.1109/ICT.2006.331220 (ICT 2006)
  13. 13.
    B.R. West, Adv. Energy Convers. 2, 209 (1962). doi: 10.1016/0365-1789(62)90025-5.CrossRefGoogle Scholar
  14. 14.
    J.P. Burgess and N.P. Milligan, IEEE Trans. Aerosp. 2, 722 (1964). doi: 10.1109/TA.1964.4319658.CrossRefGoogle Scholar
  15. 15.
    Hi-Z Technology, Inc, Thermoelectric Materials–Devices–Systems, http://www.hi-z.com/uploads/2/3/0/9/23090410/performance_calculator_hz-14.xls (Accessed 29-06-2014) (2014)
  16. 16.
    O. Högblom and R. Andersson, J. Electron. Mater. 43, 2247 (2014). doi: 10.1007/s11664-014-3020.CrossRefGoogle Scholar
  17. 17.
    F.P. Incropera, D.P. Dewitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 7th ed. (Hoboken: Wiley, 2011).Google Scholar
  18. 18.
    C.V. Madhusudana, Thermal Contact Conductance, 2nd ed. (Sydney: Springer, 2014)doi: 10.1007/978-3-319-01276-6.CrossRefGoogle Scholar
  19. 19.
    P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Mueller, J. Electron. Mater. 39, 1934 (2010). doi: 10.1007/s11664-009-1048-0.CrossRefGoogle Scholar
  20. 20.
    L.S. Fletcher, J. Heat Transf. 110, 1059 (1988). doi: 10.1115/1.3250610.CrossRefGoogle Scholar
  21. 21.
    D. Ebling, K. Bartholomé, M. Bartel, and M. Jägle, J. Electron. Mater. 39, 1376 (2010). doi: 10.1007/s11664-010-1331-0.CrossRefGoogle Scholar
  22. 22.
    D.M. Rowe and G. Min, IEE Proc. 143, 351 (1996). doi: 10.1049/ip-smt:19960714.Google Scholar
  23. 23.
    H. Fateh, C.A. Baker, M.J. Hall, and L. Shi, Appl. Energy 129, 373 (2014). doi: 10.1016/j.apenergy.2014.04.088.CrossRefGoogle Scholar
  24. 24.
    R. Bjørk, D.V. Christensen, D. Eriksen, and N. Pryds, Int. J. Thermal Sci. 85, 12 (2014). doi: 10.1016/j.ijthermalsci.2014.06.003.CrossRefGoogle Scholar
  25. 25.
    K.T. Wojciechowski, R. Zybala, and R. Mania, Microelectron. Reliab. 51, 1198 (2011). doi: 10.1016/j.microrel.2011.03.033.CrossRefGoogle Scholar
  26. 26.
    G. McConnell and R. Sehr, Solid State Electron. 2, 157 (1961). doi: 10.1016/0038-1101(61)90033-8.CrossRefGoogle Scholar
  27. 27.
    Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and P. Lecoeur, Europhys Lett. 97, 28001-p1 (2012). doi: 10.1209/0295-5075/97/28001.CrossRefGoogle Scholar
  28. 28.
    F.P. Brito, J. Martins, L.M. Goncalves, N. Antunes, and D. Sousa, SAE Int. J. Passeng. Cars Mech. Syst. 6, 652 (2013). doi: 10.4271/2013-01-0559.CrossRefGoogle Scholar
  29. 29.
    F.P. Brito, J. Martins, R. Sousa, and L.M. Gonçalves, SAE Int. J. Passeng. Cars Mech. Syst. 5, 561 (2012). doi: 10.4271/2012-01-1214.CrossRefGoogle Scholar
  30. 30.
    F.P. Brito, J. Martins, L.M. Goncalves and R. Sousa, IEEE 37th Annual Conference. doi: 10.1109/IECON.2011.6120066 (IECON 2011)
  31. 31.
    J. Martins, F.P. Brito, L.M. Goncalves, and J. Antunes, SAE Tech. Pap. Ser. No. 2011-01-0315. doi: 10.4271/2011-01-0315 (SAE Int’l, Warrendale, 2011)
  32. 32.
    F.P. Brito, E. Hançer, N. Antunes, L.M. Goncalves, and J. Martins, J. Electron. Mater. 44, 1984 (2015). doi: 10.1007/s11664-015-3638-3.CrossRefGoogle Scholar
  33. 33.
    K. Zabrocki, P. Ziolkowski, T. Dasgupta, J. de Boor, and E. Mueller, J. Electron. Mater. 42, 2402 (2013). doi: 10.1007/s11664-013-2579-y.CrossRefGoogle Scholar
  34. 34.
    ANSYS, Mechanical (formerly Simulation) (Canonsburg: Ansys Inc., 2009)Google Scholar
  35. 35.
    A.M. Pettes, M.S. Hodes, and K.E. Goodson, IEEE Trans. Adv. Packag. 32, 423 (2009). doi: 10.1109/TADVP.2008.924221.CrossRefGoogle Scholar
  36. 36.
    H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, and K. Schlereth, J. Microelectromech. Syst. 13, 414 (2004). doi: 10.1109/JMEMS.2004.828740.CrossRefGoogle Scholar
  37. 37.
    G.P. Peterson and L.S. Fletcher, Proc. Int. Symp. Cool. Technc. Electr. Equip. 438–448 (Honolulu, Hawaii 1987)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MinhoGuimarãesPortugal
  2. 2.Department of Industrial ElectronicsUniversity of MinhoGuimarãesPortugal
  3. 3.Department of Mechanical EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations