Skip to main content

Thermal Test of an Improved Platform for Silicon Nanowire-Based Thermoelectric Micro-generators

Abstract

This work reports on an improved design intended to enhance the thermal isolation between the hot and cold parts of a silicon-based thermoelectric microgenerator. Micromachining techniques and silicon on insulator substrates are used to obtain a suspended silicon platform surrounded by a bulk silicon rim, in which arrays of bottom-up silicon nanowires are integrated later on to join both parts with a thermoelectric active material. In previous designs the platform was linked to the rim by means of bulk silicon bridges, used as mechanical support and holder for the electrical connections. Such supports severely reduce platform thermal isolation and penalise the functional area due to the need of longer supports. A new technological route is planned to obtain low thermal conductance supports, making use of a particular geometrical design and a wet bulk micromachining process to selectively remove silicon shaping a thin dielectric membrane. Thermal conductance measurements have been performed to analyse the influence of the different design parameters of the suspended platform (support type, bridge/membrane length, separation between platform and silicon rim,) on overall thermal isolation. A thermal conductance reduction from 1.82 mW/K to 1.03 mW/K, has been obtained on tested devices by changing the support type, even though its length has been halved.

References

  1. R.F. Service, Science 306, 806 (2004).

    Article  Google Scholar 

  2. J.-F. Li, W.-S. Liu, L.-D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).

    Article  Google Scholar 

  3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  4. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  5. H. Wang, J.-F. Li, C.-W. Nan, M. Zhou, W. Liu, B.-P. Zhang, and T. Kita, Appl. Phys. Lett. 88, 092104 (2006).

    Article  Google Scholar 

  6. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T.M. Tritt, Nanomaterials 2, 379 (2012).

    Article  Google Scholar 

  7. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  8. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  9. D. Dávila, A. Tarancón, C. Calaza, M. Salleras, M. Fernández-Regúlez, A. San Paulo, and L. Fonseca, Nanoenergy 1, 812 (2012).

    Google Scholar 

  10. D. Dávila, A. Tarancón, D. Kendig, M. Fernández-Regúlez, N. Sabaté, M. Salleras, C. Calaza, C. Cane, I. Grácia, E. Figueras, J. Santander, A. San Paulo, A. Shakouri, and L. Fonseca, J. Electron. Mater. 40, 851 (2011).

    Article  Google Scholar 

  11. D. Dávila, A. Tarancón, C. Calaza, M. Salleras, M. Fernández-Regúlez, A. San Paulo, and L. Fonseca, J. Electron. Mater. 42, 1918 (2013).

    Article  Google Scholar 

  12. V.A. Nebolsin and A.A. Shchetinin, Inorg. Mater. 39, 899 (2003).

    Article  Google Scholar 

  13. J.B. Hannon, S. Kodambaka, F.M. Ross, and R.M. Tromp, Nature 440, 69 (2006).

    Article  Google Scholar 

  14. Y. Wang, V. Schmidt, S. Senz, and U. Gosele, Nat. Nanotechnol. 1, 186 (2006).

    Article  Google Scholar 

  15. S. Krylyuk, A.V. Davydov, and I. Levin, ACS Nano 5, 656 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Calaza.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Calaza, C., Fonseca, L., Salleras, M. et al. Thermal Test of an Improved Platform for Silicon Nanowire-Based Thermoelectric Micro-generators. J. Electron. Mater. 45, 1689–1694 (2016). https://doi.org/10.1007/s11664-015-4168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4168-8

Keywords

  • Microgenerator
  • thermoelectricity
  • harvesting