Skip to main content
Log in

Thermoelectric Properties of In-Doped Cu2ZnGeSe4

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recently, much research has been focused on finding new thermoelectric materials. Cu-based quaternary chalcogenides that belong to A2BCD4 (A = Cu; B = Zn, Cd; C = Sn, Ge; D = S, Se, Te) are wide band gap materials and one of the potential thermoelectric materials due to their complex crystal structures. In this study, In-doped quaternary compounds Cu2ZnGe1−x In x Se4 (x = 0, 0.025, 0.05, 0.075, 0.1) were prepared by a solid state synthesis method. Powder x-ray diffraction patterns of all the samples showed a tetragonal crystal structure (space group I-42m) of the main phase with a trace amount of impurity phases, which was further confirmed by Rietveld analysis. The elemental composition of all the samples showed a slight deviation from the nominal composition with the presence of secondary phases. All the transport properties were measured in the temperature range 373–673 K. The electrical resistivity of all the samples initially decreased up to ∼470 K and then increased with increase in temperature upto 673 K, indicating the transition from semiconducting to metallic behavior. Positive Seebeck coefficients for all the samples revealed that holes are the majority carriers in the entire temperature range. The substitution of In3+ on Ge4+ introduces holes and results in the decrease of resistivity as well as the Seebeck coefficient, thereby leading to the optimization of the power factor. The lattice thermal conductivity of all the samples decreased with increasing temperature, indicating the presence of phonon-phonon scattering. As a result, the thermoelectric figure of merit (zT) of the doped sample showed an increase as compared to the undoped compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Liu, F.Q. Huang, I.W. Chen, and L.D. Chen, Appl. Phys. Lett. 94, 202103 (2009).

    Article  Google Scholar 

  2. M.L. Liu, I.W. Chen, F.Q. Huang, and L.D. Chen, Adv. Mater. 21, 3808 (2009).

    Article  Google Scholar 

  3. X.Y. Shi, F.Q. Huang, M.L. Liu, and L.D. Chen, Appl. Phys. Lett. 94, 122103 (2009).

    Article  Google Scholar 

  4. W.G. Zeier, A. Lalonde, Z.M. Gibbs, C.P. Heinrich, M. Panth¨ofer, G.J. Snyder, and W. Tremel, J. Am. Chem. Soc. 134, 7147 (2012).

    Article  Google Scholar 

  5. N.N. Konstantinova, G.A. Medvedkin, I.K. Polushina, YuV Rud, A.D. Smirnova, V.I. Sokolova, and M.A. Tairov, Izv. Akad. Nauk SSSR 25, 1445 (1989).

    Google Scholar 

  6. S.A. Mkrtchyan, K. Dovletov, E.G. Zhukov, A.G. Melikdzhanyan, and S. Nuryev, Izv. Akad. Nauk SSSR 24, 1094 (1988).

    Google Scholar 

  7. L. Guen, W.S. Glaunsinger, and A. Wold, Mater. Res. Bull. 14, 463 (1979).

    Article  Google Scholar 

  8. C. Raju, M. Falmbigl, P. Rogl, X. Yan, E. Bauer, J. Horky, M. Zehetbauer, and R. Chandra Mallik, AIP Adv. 3, 032106 (2013).

    Article  Google Scholar 

  9. R. Chetty, M. Falmbigl, P. Rogl, P. Heinrich, E. Royanian, E. Bauer, S. Suwas, and R.C. Mallik, Phys. Status Solidi A 210, 2471 (2013).

    Article  Google Scholar 

  10. R. Chetty, J. Dadda, J. de Boor, E. Müller, and R.C. Mallik, Intermetallics 57, 156 (2015). doi:10.1016/j.intermet.2014.10.015.

    Article  Google Scholar 

  11. Y. Dong, A.R. Khabibullin, K. Wei, Z.-H. Ge, J. Martin, J.R. Salvador, L.M. Woods, and G.S. Nolas, Appl. Phys. Lett. 104, 252107 (2014).

    Article  Google Scholar 

  12. B. Wang, Y. Li, J. Zheng, M. Xu, F. Liu, W. Ao, J. Li, and F. Pan, Sci. Rep. 5, 9365 (2015).

    Article  Google Scholar 

  13. F.-J. Fan, B. Yu, Y.-X. Wang, Y.-L. Zhu, X.-J. Liu, S.-H. Yu, and Z. Ren, J. Am. Chem. Soc. 133, 15910 (2011).

    Article  Google Scholar 

  14. M. Ibanez, D. Cadavid, R. Zamani, N. Garcia-Castello, V. Izquierdo-Roca, W.H. Li, A. Fairbrother, J.D. Prades, A. Shavel, J. Arbiol, A. Perez-Rodriguez, J.R. Morante, and A. Cabot, Chem. Mater. 24, 562 (2012).

    Article  Google Scholar 

  15. M. Ibanez, R. Zamani, A. LaLonde, D. Cadavid, W.H. Li, A. Shavel, J. Arbiol, J.R. Morante, S. Gorsse, G.J. Snyder, and A. Cabot, J. Am. Chem. Soc. 134, 4060 (2012).

    Article  Google Scholar 

  16. Y. Dong, H. Wang, and G.S. Nolas, Inorg. Chem. 52, 14364 (2013).

    Article  Google Scholar 

  17. J. Navrátil, V. Kucek, T. Plecháček, E. černošková, F. Laufek, č. Drašar, and P. Knotek, J. Electron. Mater. 43, 3719 (2014).

    Article  Google Scholar 

  18. F.S. Liu, J.X. Zheng, M.J. Huang, L.P. He, W.Q. Ao, F. Pan, and J.Q. Li, Sci. Rep. 4, 5774 (2014).

    Google Scholar 

  19. T. Roisnel and J. Rodriguez-Carvajal, Mater. Sci. Forum 378–381, 118 (2001). doi:10.4028/www.scientific.net/MSF.378-381.118.

    Article  Google Scholar 

  20. O.V. Parasyuk, L.D. Gulay, Y.E. Romanyuk, and L.V. Piskach, J. Alloys Compd. 329, 202 (2001).

    Article  Google Scholar 

  21. W.G. Zeier, C.P. Heinrich, T. Day, C. Panithipongwut, G. Kieslich, G. Brunklaus, G.J. Snyder, and W. Tremel, J. Mater. Chem. A 2, 1790 (2014). doi:10.1039/C3TA13007J.

    Article  Google Scholar 

  22. O. Madelung, II-VI compounds, in: semiconductors: data handbook, 3rd ed. (Berlin Heidelberg: Springer, 2004), p. 173.

    Book  Google Scholar 

  23. D.M. Chiu, in: Energy Conversion Engineering Conference and Exhibit, 2000. (IECEC) 35th Intersociety, 1232, 1233 (2000).

  24. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  25. G.B. Stringfellow and R.H. Bube, Phys. Rev. 171, 903 (1968).

    Article  Google Scholar 

  26. Y.F. Vaksman, Y.A. Nitsuk, Y.N. Purtov, and P.V. Shapkin, Semiconductors 37, 145 (2003).

    Article  Google Scholar 

  27. D.M. Rowe and C.M. Bhandari, Modern thermoelectrics (Reston: Reston Publishing Company, 1983), p. 26.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science & Technology (DST), India for financial support through Grant No. SB/EMEQ-243/2013. The authors would like to thank Mr. Nilanchal Patra and Mr. Sayan Das for helping with Hall measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Mallik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetty, R., Bali, A., Femi, O.E. et al. Thermoelectric Properties of In-Doped Cu2ZnGeSe4 . J. Electron. Mater. 45, 1625–1632 (2016). https://doi.org/10.1007/s11664-015-4131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4131-8

Keywords

Navigation