Skip to main content

Advertisement

Log in

The Fragility of Thermoelectric Power Factor in Cross-Plane Superlattices in the Presence of Nonidealities: A Quantum Transport Simulation Approach

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Energy filtering has been put forth as a promising method for achieving large thermoelectric power factors in thermoelectric materials through Seebeck coefficient improvement. Materials with embedded potential barriers, such as cross-plane superlattices, provide energy filtering, in addition to low thermal conductivity, and could potentially achieve high figure of merit. Although there exist many theoretical works demonstrating Seebeck coefficient and power factor gains in idealized structures, experimental support has been scant. In most cases, the electrical conductivity is drastically reduced due to the presence of barriers. In this work, using quantum-mechanical simulations based on the nonequilibrium Green’s function method, we show that, although power factor improvements can theoretically be observed in optimized superlattices (as pointed out in previous studies), different types of deviations from the ideal potential profiles of the barriers degrade the performance, some nonidealities being so significant as to negate all power factor gains. Specifically, the effect of tunneling due to thin barriers could be especially detrimental to the Seebeck coefficient and power factor. Our results could partially explain why significant power factor improvements in superlattices and other energy-filtering nanostructures mainly fail to be realized, despite theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  2. L.D. Zhao, S.H. Lo, J.Q. He, L. Hao, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011).

    Article  Google Scholar 

  3. D.M. Rowe and G. Min, AIP Conf. Proc. 316, 339 (1994).

    Article  Google Scholar 

  4. Y. Nishio and T. Hirano, Jpn. J. Appl. Phys. 36, 170 (1997).

    Article  Google Scholar 

  5. G.D. Mahan and L.M. Woods, Phys. Rev. Lett. 80, 4016 (1998).

    Article  Google Scholar 

  6. D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).

    Article  Google Scholar 

  7. J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B 74, 205335 (2006).

    Article  Google Scholar 

  8. A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 205302 (2009).

    Article  Google Scholar 

  9. A. Shakouri, Annu. Rev. Mater. Res. 41, 399 (2011).

    Article  Google Scholar 

  10. R. Kim and M. Lundstrom, J. Appl. Phys. 110, 034511 (2011).

    Article  Google Scholar 

  11. R. Kim and M.S. Lundstrom, J. Appl. Phys. 111, 024508 (2012).

    Article  Google Scholar 

  12. D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).

    Article  Google Scholar 

  13. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  14. H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).

    Article  Google Scholar 

  15. N. Neophytou and H. Kosina, J. Appl. Phys. 114, 044315 (2013).

    Article  Google Scholar 

  16. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).

    Article  Google Scholar 

  17. J.-H. Bahk, Z. Bian, and A. Shakouri, Phys. Rev. B 89, 075204 (2014).

    Article  Google Scholar 

  18. J.-H. Bahk and A. Shakouri, Appl. Phys. Lett. 105, 052106 (2014).

    Article  Google Scholar 

  19. S. Datta, Quantum Transport: Atom to Transistor (Cambridge, NY: Cambridge University Press, 2005).

    Book  Google Scholar 

  20. R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997).

    Article  Google Scholar 

  21. S.O. Koswatta, S. Hasan, M.S. Lundstrom, and M.P. Anantram, IEEE Trans. Electron Dev. 54, 2339 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Vienna Scientific Computing Cluster for computational resources, and funding from the Austrian Science Fund FWF (Project Code P25368-N30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Thesberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thesberg, M., Pourfath, M., Neophytou, N. et al. The Fragility of Thermoelectric Power Factor in Cross-Plane Superlattices in the Presence of Nonidealities: A Quantum Transport Simulation Approach. J. Electron. Mater. 45, 1584–1588 (2016). https://doi.org/10.1007/s11664-015-4124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4124-7

Keywords

Navigation