Elastic, Electronic, Optical and Thermal Properties of Na2Po: An Ab Initio Study

Abstract

The structural, elastic, electronic, optical and thermodynamic properties of the sodium polonide Na2Po compound have been studied through the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) and tight-binding linear muffin-tin orbital (TB-LMTO) methods. The exchange–correlation potential was treated within the local density approximation for the TB-LMTO calculations and within the generalized gradient approximation for the FP-LAPW + lo calculations. In addition, Tran and Blaha-modified Becke–Johnson (TB-mBJ) potential and Engel–Vosko generalized gradient approximation were used for the electronic and optical properties. Ground state properties such as the equilibrium lattice constant, bulk modulus and its pressure derivative were calculated and compared with available data. The single-crystal and polycrystalline elastic constants of the considered compound were calculated via the total energy versus strain in the framework of the FP-LAPW + lo approach. The calculated electronic structure reveals that Na2Po is a direct band gap semiconductor. The frequency-dependent dielectric function, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for a wide energy range. The variations of the lattice constant, bulk modulus, heat capacity, volume expansion coefficient and Debye temperature with temperature and pressure were calculated successfully using the FP-LAPW + lo method in combination with the quasi-harmonic Debye model.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R.D. Eithiraj, G. Jaiganesh, and G. Kalpana, Int. J. Mod. Phys. B 23, 5027 (2009).

    Article  Google Scholar 

  2. 2.

    H. Khachai, R. Khenata, A. Bouhemadou, A. Haddou, A.H. Reshak, B. Amrani, D. Rached, and B. Soudini, J. Phys. 21, 095404 (2009).

    Google Scholar 

  3. 3.

    E. Zintl, A. Harderand, and B. Dauth, Z. Elektrochem. 40, 588 (1934).

    Google Scholar 

  4. 4.

    D. Biseri, A. di Bona, P. Paradisi, and S. Valeri, J. App. Phys. 87, 543 (2000).

    Article  Google Scholar 

  5. 5.

    A. Piccioli, R. Pegna, I. Fedorko, M. Giunta, and N. Malakhov, Nucl. Instrum. Methods Phys. Res. A 518, 602 (2004).

    Article  Google Scholar 

  6. 6.

    C. Joram, Nucl. Phys. B 78, 407 (1999).

    Article  Google Scholar 

  7. 7.

    X. Zhang, C. Ying, H. Ma, G. Shi, and Z. Li, Phys. Scr. 88, 035602 (2013).

    Article  Google Scholar 

  8. 8.

    W. Bührer and H. Bill, Helv. Phys. Acta 50, 431 (1977).

    Google Scholar 

  9. 9.

    B. Bertheville, H. Bill, and F. Kubel, J. Phys. Chem. Solids 58, 1569 (1997).

    Article  Google Scholar 

  10. 10.

    W. Bührer and H. Bill, J. Phys. C 13, 5495 (1980).

    Article  Google Scholar 

  11. 11.

    J.C. Schon, Z. Cancarevic, and M. Jansen, J. Chem. Phys. 121, 2289 (2004).

    Article  Google Scholar 

  12. 12.

    A. Lichanot, E. Apra, and R. Dovesi, Phys. Status Solidi (b) 177, 157 (1993).

    Article  Google Scholar 

  13. 13.

    P. Azavant and A. Lichanot, Acta Cryst. (A) 49, 91 (1993).

    Article  Google Scholar 

  14. 14.

    P. Azavant, A. Lichanot, M. Rérat, and C. Pisani, Acta Cryst. (B) 50, 279 (1994).

    Article  Google Scholar 

  15. 15.

    H. Khachai, R. Khenata, A. Bouhemadou, A.H. Reshak, A. Haddou, and B. Soudini, Solid State Commun. 147, 178 (2008).

    Article  Google Scholar 

  16. 16.

    F. Kalarasse and B. Bennecer, Comput. Mat. Sci. 50, 1806 (2011).

    Article  Google Scholar 

  17. 17.

    S.M. Alay-e-Abbasand and A. Shaukat, J. Mater. Sci. 46, 10027 (2011).

    Google Scholar 

  18. 18.

    G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordstrom, Phys. Rev. B 64, 195134 (2001).

    Article  Google Scholar 

  19. 19.

    K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  20. 20.

    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  21. 21.

    W. Kohn and L.J. Sham, Phys. Rev. 140, A113 (1965).

    Article  Google Scholar 

  22. 22.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  23. 23.

    K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, J. Appl. Phys. 113, 014304 (2013).

    Article  Google Scholar 

  24. 24.

    K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, J. Appl. Phys. 114, 034901 (2013).

    Article  Google Scholar 

  25. 25.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  26. 26.

    E. Engel and S.H. Vosko, Phys. Rev. B 47, 13164 (1993).

    Article  Google Scholar 

  27. 27.

    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  28. 28.

    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  29. 29.

    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  Google Scholar 

  30. 30.

    O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  Google Scholar 

  31. 31.

    U. von Barth and L. Hedin, Phys. C 5, 1629 (1972).

    Article  Google Scholar 

  32. 32.

    O. Jepsen and O.K. Andersen, Solid State Commun. 9, 1763 (1971).

    Article  Google Scholar 

  33. 33.

    M.A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  34. 34.

    M.A. Blanco, A.M. Pendás, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. Theochem. 368, 245 (1996).

    Article  Google Scholar 

  35. 35.

    M. Florez, J.M. Recio, E. Francisco, M.A. Blanco, and A.M. Pendás, Phys. Rev. B 66, 144112 (2002).

    Article  Google Scholar 

  36. 36.

    H.V. Moyer, Polonium (Oak Ridge: United States Atomic Energy Commission, 1956).

    Google Scholar 

  37. 37.

    F. Birch, J. Geophys. Res. 83, 1257 (1978).

    Article  Google Scholar 

  38. 38.

    M.J. Mehl, Phys. Rev. B 47, 2493 (1993).

    Article  Google Scholar 

  39. 39.

    J. Wang and S. Yip, Phys. Rev. Lett. 71, 4182 (1993).

    Article  Google Scholar 

  40. 40.

    J. Haines, J.M. Leger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).

    Article  Google Scholar 

  41. 41.

    S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  42. 42.

    H. Ledbetter and A. Migliori, J. Appl. Phys. 100, 063516 (2006).

    Article  Google Scholar 

  43. 43.

    P. Lloveras, T. Castán, M. Porta, A. Planes, and A. Saxena, Phys. Rev. Lett. 100, 165707 (2008).

    Article  Google Scholar 

  44. 44.

    J.F. Nye, Properties of crystals (Oxford: Oxford University Press, 1985).

    Google Scholar 

  45. 45.

    C. Ambrosch-Draxl and J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006).

    Article  Google Scholar 

  46. 46.

    A. Einstein, Ann. Phys. 22, 80 (1907).

    Google Scholar 

  47. 47.

    A.T. Petit and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).

    Google Scholar 

Download references

Acknowledgements

Authors (R. Khenata, A. Bouhemadou and S. Bin-Omran) acknowledge the financial support by the Deanship of Scientific Research at King Saud University for funding the work through the research group Project No. RPG-VPP-088.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. D. Eithiraj or R. Khenata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baki, N., Eithiraj, R.D., Khachai, H. et al. Elastic, Electronic, Optical and Thermal Properties of Na2Po: An Ab Initio Study. Journal of Elec Materi 45, 435–443 (2016). https://doi.org/10.1007/s11664-015-4119-4

Download citation

Keywords

  • Electronic structure
  • band gap
  • optoelectronic
  • FP-LAPW + lo
  • TB-LMTO