Skip to main content
Log in

Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sahai and N. Goswami, Ceram. Int. 40, 14569 (2014).

    Article  Google Scholar 

  2. G. Srinivasan and J. Kumar, J. Cryst. Growth 310, 1841 (2008).

    Article  Google Scholar 

  3. P.A. Rodnyi and I.V. Khodyuk, Opt. Spectrosc. 111, 776 (2011).

    Article  Google Scholar 

  4. H.B. Ruan, L. Fang, D.C. Li, M. Saleem, G.P. Qin, and C.Y. Kong, Thin Solid Films 519, 5078 (2011).

    Article  Google Scholar 

  5. J. Han, P.Q. Mantas, and A.M.R. Senos, J. Eur. Ceram. Soc. 22, 49 (2002).

    Article  Google Scholar 

  6. J.B. Zhong, J.Z. Li, J. Zeng, X.Y. He, W. Hu, and Y.C. Shen, Mater. Res. Bull. 47, 3893 (2012).

    Article  Google Scholar 

  7. N.R. Yogamalar and A.C. Bose, Progress Nanotechnol. Nanomater. 2, 1 (2013).

    Google Scholar 

  8. A. Kołodziejczak-Radzimska and T. Jesionowski, Materials 7, 2833 (2014).

    Article  Google Scholar 

  9. P. Suresh Kumar, P. Paik, A. Dhayal Raj, D. Mangalaraj, D. Nataraj, A. Gedanken, and S. Ramakrishna, Appl. Surf. Sci. 258, 6765 (2012).

    Article  Google Scholar 

  10. U. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  11. J. Portieret, G. Campet, C.W. Kwon, J. Etourneau, and M.A. Subramanian, Int. J. Inorg. Mater. 3, 1091 (2001).

    Article  Google Scholar 

  12. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Superlattice Microstruct. 34, 3 (2003).

    Article  Google Scholar 

  13. T. Fukumura, H. Toyosaki, and Y. Yamada, Semicond. Sci. Technol. 20, S103 (2005).

    Article  Google Scholar 

  14. W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, G.E. Jellison Jr, and H.N. Lee, Nat. Commun. 3, 689 (2012).

    Article  Google Scholar 

  15. J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, and R. Yu, J. Phys. 11, 063009 (2009).

    Google Scholar 

  16. J.A. Mary, J.J. Vijaya, M. Bououdina, and L.J. Kennedy, Superlattices Microstruct. 76, 174 (2014).

    Article  Google Scholar 

  17. C.H. Bate, W.B. White, and R. Roy, J. Inorg. Nucl. Chem. 28, 397 (1966).

    Article  Google Scholar 

  18. Z.H. Wang, D.Y. Geng, and Z.D. Zhang, Solid State Commun. 149, 682 (2009).

    Article  Google Scholar 

  19. S. Husain, L.A. Alkhtaby, E. Giorgetti, A. Zoppi, and M.M. Miranda, J. Lumin. 145, 132 (2014).

    Article  Google Scholar 

  20. M. Peiteado, A.C. Caballero, and D. Makovec, Acta Mater. 56, 4028 (2008).

    Article  Google Scholar 

  21. D.E. Motaung, I. Kortidis, D. Papadaki, S.S. Nkosi, G.H. Mhlongo, J. Wesley Smith, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, G. Kiriakidis, and S.S. Ray, Appl. Surf. Sci. 311, 14 (2014).

    Article  Google Scholar 

  22. R.B. Bylsma, W.M. Becker, J. Kossut, and U. Debska, Phys. Rev. B 33, 12 (1986).

    Article  Google Scholar 

  23. M. Liu, A.H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992).

    Article  Google Scholar 

  24. S.S. Kumar, P. Venkateswarlu, V.R. Rao, and G.N. Rao, Int. Nano Lett. 3, 30 (2013).

    Article  Google Scholar 

  25. T. Fukumura, Z. Jin, A. Ohtomo, A.H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999).

    Article  Google Scholar 

  26. M. Amin, U. Manzoor, M. Islam, A.S. Bhatti, and N.A. Shah, Sensors 12, 13842 (2012).

    Article  Google Scholar 

  27. J.V. Dubrawski, React Solids 2, 315 (1987).

    Article  Google Scholar 

  28. Y. Tian, D. Wu, X. Jia, B. Yu, and S. Zhan, J. Nanomater. 2011, 837123 (2011).

    Google Scholar 

  29. D. Paul Joseph and C. Venkateswaran, J Atom. Mol. Optic. Phys. 2011, 270540 (2011).

    Google Scholar 

  30. R.Y. Sato-Berru, A. Vazquez-Olmos, A.L. Fernandez-Osorio, and S. Sotres-Martınez, J. Raman Spectrosc. 38, 1073 (2007).

    Article  Google Scholar 

  31. S. Guo, Z. Du, and S. Dai, Phys. Status Solidi B 246, 2329 (2009).

    Article  Google Scholar 

  32. F. Rubio-Marcos, A. Quesadab, M.A. Garcia, M.A. Banares, J.L.G. Fierro, M.S. Martin-Gonzalez, J.L. Costa-Krämerf, and J.F. Fernandez, J. Solid State Chem. 182, 1211 (2009).

    Article  Google Scholar 

  33. Y.M. Hao, S.Y. Lou, S.M. Zhou, R.J. Yuan, G.Y. Zhu, and N. Li, Nanoscale Res. Lett. 7, 100 (2012).

    Article  Google Scholar 

  34. H.K. Yadav, K. Sreenivas, R.S. Katiyar, and V. Gupta, J. Phys. D Appl. Phys. 40, 6005 (2007).

    Article  Google Scholar 

  35. X. Yan, D. Hu, H. Li, L. Li, X. Chong, and Y. Wang, Phys. B 406, 3956 (2011).

    Article  Google Scholar 

  36. L. Schmidt-Mende and J.L. MacManus-Driscoll, Mater. Today 5, 40 (2007).

    Article  Google Scholar 

  37. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, S.M. Pawar, and C.D. Lokhande, Appl. Surf. Sci. 256, 4411 (2010).

    Article  Google Scholar 

  38. D. Banerjee and H.W. Nesbitt, Geochim. Cosmochim. Acta 63, 3025 (1999).

    Article  Google Scholar 

  39. M. Kantcheva, M.U. Kucukkal, and S. Suzer, J. Mol. Struct. 482–483, 19 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Swaminathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Ramesh, P. & Swaminathan, P. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State. J. Electron. Mater. 44, 4710–4716 (2015). https://doi.org/10.1007/s11664-015-4117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4117-6

Keywords

Navigation