Skip to main content
Log in

Thermal Aspects of Pyroelectric Ceramic Functional Material for Infrared Image Sensing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we present the design, fabrication and thermal simulation of smart 1024-element (32 × 32 pixels), monolithic, pyroelectric, functional electro-ceramic material-based infrared (IR) image sensors. A sol–gel-deposited PbZr0.4Ti0.6O3 (PZT) thin film was used as a pyroelectric material for the detector. We tailored the geometries and dimensions of the devices in designing the the image sensors with a smart material. The influence of a thermal isolator has been shown to significantly reduce heat loss to the device structure and environment. Introducing circular pixels instead of square ones has confirmed the ability to obtain an optimal design with a functional material for use in a smart image sensor, resulting in a maximal temperature change of 4 mK at a response frequency of 10 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Ho, Y.K. Fang, K.H. Wu, W.T. Hsieh, C.W. Chu, C.R. Huang, M.S. Ju, and C.P. Chang, IEEE Electron Device Lett. 19, 189 (1998)

    Article  Google Scholar 

  2. Y. Edo, H. Takao, K. Sawada, and M. Ishida, IEICE Tech. Paper 105, 7 (2005)

    Google Scholar 

  3. H. Takao, R. Asaoka, K. Sawada, S. Kawahito, and M. Ishida, IEICE Tech. Paper 123, 422 (2004)

    Google Scholar 

  4. W.G. Liu, J.S. Ko, and W. Zhu, Thin Solid Films 371, 254 (2000)

    Article  Google Scholar 

  5. E. Dereniak and D. Crowe, Optical Radiation Detectors (1984), p. 22

  6. M.S. Suen, D.T.W. Lin, Y.C. Hu, and J.C. Hsieh, Proceedings of the International MultiConference of Engineers and Computer Scientists (Hong Kong, 2010), 1770

  7. J.S. Ko, W. Liu, W.Z. Zhu, and B.M. Kwak, Solid-State Electron. 46, 1155 (2002)

    Article  Google Scholar 

  8. R.W. Whatmore, Ferroelectrics 118, 241 (1991)

    Article  Google Scholar 

  9. P. Muralt, Rep. Prog. Phys. 64, 1339 (2001)

    Article  Google Scholar 

  10. B.L. Sidney, Phys. Today 5, 31 (2005)

    Google Scholar 

  11. M. Ishida, I. Katakabe, and T. Nakamura, Appl. Phys. Lett. 52, 1326 (1988)

    Article  Google Scholar 

  12. N. Fujitsuka, J. Sakata, Y. Miyachi, K. Mizuno, K. Ohtsuka, Y. Taga, and O. Tabata, Sens. Actuators A 66, 237 (1998)

    Article  Google Scholar 

  13. A. Rogalski, Prog. Quantum Electron. 27, 59 (2003)

    Article  Google Scholar 

  14. L. Dong, R. Yue, and L. Liu, Sens. Actuators A 105, 286 (2003)

    Article  Google Scholar 

  15. S. Eminoglu, D. Tezcana, M. Tanrikulu, and T. Akin, Sens. Actuators A 109, 102 (2003)

    Article  Google Scholar 

  16. A. Schaufelbuehl, U. Munch, C. Menolfi, O. Branda, O. Paul, Q. Huang, and H. Baltes, Transducers Tech. Dig. 3D906513, 200 (2001)

  17. A.D. Oliver and K.D. Wise, Sens. Actuators A 73, 222 (1999)

    Article  Google Scholar 

  18. C. Calaza, N. Viarani, G. Pedretti, M. Gottardi, A. Simoni, V. Zanini, and M. Zen, Sens. Actuators A 132, 129 (2006)

    Article  Google Scholar 

  19. K. Sawada, M. Ishida, N. Ohtakdea, and T. Nakamura, Appl. Phys. Lett. 52, 1672 (1988)

    Article  Google Scholar 

  20. N. Kawazu, K. Kikuchi, D. Akai, K. Sawada, and M. Ishida, 17th International IEEE Symposium on the Applications of Ferroelectr. (Santa Fe, NM, 2008), p. 15

  21. T. Kotani, T. Nakanishi, and K. Nomura, Jpn. J. Appl. Phys. 32, 6297 (1993)

    Article  Google Scholar 

  22. M. Kohli, A. Seifert, B. Willing, K. Brooks, and P. Muralt, Integr. Ferroelectr. 17, 359 (1997)

    Article  Google Scholar 

  23. M. Kohli, C. Wüthrich, K.G. Brooks, B. Willing, M. Forster, P. Muralt, N. Setter, and P. Ryser, Sens. Actuators A 60, 147 (1997)

    Article  Google Scholar 

  24. M. Kohli, A. Seifert, and P. Muralt, Integr. Ferroelectr. 22, 453 (1998)

    Article  Google Scholar 

  25. S. Kawahito, K. Sawada, K. Tada, M. Ishida, and Y. Tadokoro, Transaction on the Institute of Electrical Engineering, Japan, vol. 122 (2002), p. 166

  26. F. Grum and R.J. Becherer, Optical Radiation Measurements, vol. 1 (Academic Press, New York, 1979), p. 90

    Google Scholar 

  27. L.I. John and L.V. John, A Heat Transfer Textbook, 3rd edn. (Phlogiston Press, Massachusetts, 2003), p. 56

    Google Scholar 

  28. Y. Cengel and A. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 4th edn. (McGraw-Hill, Higher Education, 2011), p. 45

  29. G.D. Cicco, B. Morten, D. Dalmonego, and M. Prudenziati, Sens. Actuators, A 76, 409 (1999)

    Article  Google Scholar 

  30. S. Ueha and Y. Tomikawa, Ultrasonic Motors: Theory and Applications, vol. 29 (Oxford Science Publications, Clarendon Press, Oxford, 1993), p. 120

    Google Scholar 

  31. M.A. Matin, K. Oishi, A. Katsuta, D. Akai, K. Sawada, and M. Ishida, J. Electron. Mater. 44, 2544 (2015)

    Article  Google Scholar 

  32. Marc User Guide, MSC Software Corporation (4675 MacArthur Court, Newport Beach, California 92660, USA)

  33. http://www.researchgate.net/file.PostFileLoader.html?id= 54c8f917cf57d749248b4689&assetKey=AS%3A273740741447683%401442276287686. Accessed 2 July 2015

  34. K. Visvanathan and Y.B. Gianchandani, 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (Denver, USA, 2009), p. 9

  35. S. Lang, W. Zhu, and Z. Ye, J. Appl. Phys. 111, 1 (2012)

    Google Scholar 

  36. E. Hong, S. Krishnaswamy, C. Freidhoff, and S. Trolier-McKinstry, Mat. Res. Soc. Symp. Proc. 687, 1 (2002)

    Google Scholar 

  37. M. Duc-Nguyen, M. Dekkers, H.N. Vu, and G. Rijnders, Sens. Actuators A 199, 98 (2013)

    Article  Google Scholar 

  38. http://ottp.fme.vutbr.cz/vyuka/thermomechanics/therm_prop_ met.htm. Accessed 02 July 2015

  39. J. Arblaster, Platinum Met. Rev. 38, 119 (1994)

    Google Scholar 

  40. http://heraeus-contactmaterials.com/media/webmedia_local/ media/downloads/documentsbw/factsheets_bw_2012/Fact sheet_AlSi_2012.pdf. Accessed 02 July 2015

Download references

Acknowledgements

This research was financially supported by the Global Center of Excellence (GCOE) Program, Frontiers of Intelligent Sensing of the Ministry of Education, Culture, Sports, Science and Education, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Matin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matin, M., Sugai, T., Kawazu, N. et al. Thermal Aspects of Pyroelectric Ceramic Functional Material for Infrared Image Sensing. J. Electron. Mater. 45, 329–338 (2016). https://doi.org/10.1007/s11664-015-4075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4075-z

Keywords

Navigation