Skip to main content
Log in

First Principles Study of Linear and Nonlinear Optical Properties of 2-Aminofluorene (C13H11N)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, electronic band structure, linear and nonlinear optical properties of crystalline 2-aminofluorene are calculated following the density functional theory. The exchange correlation effects are taken into account by generalized gradient approximation and modified Becke–Johnson potential. In order to show the excitonic effects, we have used the recently published bootstrap exchange–correlation kernel within time-dependent density functional theory (TDDFT). The TDDFT results show the enhanced low-energy transitions (compared to RPA) and this phenomenon is a clear signature of excitonic effects. Our results for partial density of states show that the higher valence bands and the lower conduction bands come predominantly from the amino group. Generally, the calculated band structure has small dispersions which is a sign of weak intermolecular interactions. The calculated energy loss spectra possess plasmon peaks at around 26 eV. There is sufficient anisotropy between the components of dielectric tensor, especially in the non-absorbing spectra range, which is important for second harmonic generation (SHG). We have shown that the title crystal has a good potential for SHG in the visible region. Furthermore, we have reported the 2ω/ω intra-band and inter-band contributions to the dominant nonlinear susceptibilities. Findings indicate that these contributions have opposite signs at higher energies and nullify each other. The behavior of dominant second-order susceptibilities are studied in comparison with the absorptive parts of linear susceptibilities, and it is found that the general form of nonlinear spectra can be deduced from combinations of ε 2(ω) and ε 2(ω/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Dimitrakopoulos and D.J. Mascaro, IBM J. Res. Dev. 45, 11 (2001).

    Article  Google Scholar 

  2. L. Torsi, N. Cioffi, C.D. Franco, L. Sabatini, P.G. Zambonin, and T. Bleve-Zacheo, Solid-State Electron. 45, 1479 (2001).

    Article  Google Scholar 

  3. L. Dalton, Advances in Polymer Science (Heidelberg: Springer, 2002), pp. 1–86.

    Google Scholar 

  4. P.E. Gunter, Nonlinear Optical Effects and Materials (Berlin: Springer, 2000), pp. 163–274.

    Book  Google Scholar 

  5. J. Zyss, Molecular Nonlinear Optics: Materials, Physics, and Devices (New York: Academic, 1994), pp. 129–200.

    Book  Google Scholar 

  6. D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Orlando: Academic, 1987), pp. 405–435.

    Google Scholar 

  7. H.S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers (New York: CRC, 1997), pp. 89–300.

    Google Scholar 

  8. J. Messier, F. Kajzar, and P. Prasad, Organic Molecules for Nonlinear Optics and Photonics (Dordrecht: Kluwer, 1991), pp. 37–155.

    Book  Google Scholar 

  9. R.A. Hann and D. Bloor, Organic Materials for Nonlinear Optics II, London (Cambridge: Royal Society of Chemistry, 1991), pp. 20–129.

    Google Scholar 

  10. M.G. Kuzyk, M. Eich, and R.A. Norwood, Linear and Nonlinear Optics of Organic Materials III, (San Diego, 2003), pp. 43–49.

  11. N. Leclerc, S. Sanaur, L. Galmiche, F. Mathevet, A.J. Attias, J.L. Fave, J. Roussel, P. Hapiot, N. Lema, and B. Chem, Mater. 17, 502 (2005).

    Google Scholar 

  12. P. Anbarasu, M. Arivazhagan, and V. Balachandran, Indian J. Pure Appl. Phys. 50, 91 (2012).

    Google Scholar 

  13. E.C. Miller, T.L. Fletcher, A. Margreth, and J.A. Miller, Cancer Res. 22, 1002 (1962).

    Google Scholar 

  14. F. Bielschowsky and M. Bielschowsky, Br. J. Cancer 14, 195 (1960).

    Article  Google Scholar 

  15. S.J. Culp, M.C. Poirier, and F.A. Beland, Environ. Health Perspect. 99, 273 (1993).

    Article  Google Scholar 

  16. S. Dutta, Y. Li, D. Johnson, L. Dzantiev, C.C. Richardson, L.J. Romano, and T. Ellenberger, Proc. Natl. Acad. Sci. U. S. A. 101, 16186 (2004).

    Article  Google Scholar 

  17. G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, and J.R. Durig, Spectrochim. Acta 9A, 2007 (1993).

    Article  Google Scholar 

  18. K.D. Belfield and K.J. Schafer, Chem. Mater. 14, 3656 (2002).

    Article  Google Scholar 

  19. C.C. Corredor, Z.L. Huang, K.D. Belfield, A.R. Morales, and M.V. Bondar, Chem. Mater. 19, 5165 (2007).

    Article  Google Scholar 

  20. K.D. Belfield, M.V. Bondar, F.E. Hernandez, and O.V. Przhonska, J. Phys. Chem. C 112, 5618 (2008).

    Article  Google Scholar 

  21. W.Y. Wong, Coord. Chem. Rev. 249, 971 (2005).

    Article  Google Scholar 

  22. M.V. Bondar, O.V. Przhonska, O.D. Kachkovsky, A. Fraza, A.R. Morales, and K.D. Belfield, Ukr. J. Phys. 58, 748 (2013).

    Google Scholar 

  23. J. Hwang, E.G. Kim, J. Liu, J. Bredas, A. Duggal, and A. Kahn, J. Phys. Chem. C 111, 1378 (2007).

    Article  Google Scholar 

  24. L. Licinia, G. Justino, M.L. Ramos, P.E. Abreau, A. Charas, J. Morgado, U. Scherff, B.F. Minaev, H. Agren, and H.D. Burrows, J. Phys. Chem. C 117, 17969 (2013).

    Article  Google Scholar 

  25. T. Thormann, M. Rogojerov, B. Jordanov, and E.W. Thulstrup, J. Mol. Struct. 509, 93 (1999).

    Article  Google Scholar 

  26. S. Jone Pradeepa and N. Sundaraganesan, Spectrochim. Acta, Part A 125, 211 (2014).

    Article  Google Scholar 

  27. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  28. W. Kohn and L.J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  29. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  30. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).

    Article  Google Scholar 

  31. E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).

    Article  Google Scholar 

  32. E.K.U. Gross, F.J. Dobson, and M. Petersilka, Density Functional Theory (New York: Springer, 1996).

    Google Scholar 

  33. S. Sharma, J.K. Dewhurst, A. Sanna, and E.K.U. Gross, Phys. Rev. Lett. 107, 186401 (2011).

    Article  Google Scholar 

  34. Elk FP-LAPW code, K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, F. Bultmark, H. Gross, C. Ambrosch-Draxl, C. Persson, C. Brouder, R. Armiento, A. Chizmeshya, P. Anderson, I. Nekrasov, F. Wagner, F. Kalarasse, J. Spitaler, S. Pittalis, N. Lathiotakis, T. Burnus, S. Sagmeister, C. Meisenbichler, S. Lebegue, Y. Zhang, F. Kormann, A. Baranov, A. Kozhevnikov, S. Suehara, F. Essenberger, A. Sanna, T. McQueen, T. Baldsiefen, M. Blaber, A. Filanovich, T. Bjorkman. http://elk.sourceforge.net/.

  35. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1997).

    Article  Google Scholar 

  36. M.A.L. Marques, M.J.T. Oliveira, and T. Burnus, Comput. Phys. Commun. 183, 2272 (2012).

    Article  Google Scholar 

  37. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009).

    Article  Google Scholar 

  38. G. Grosso and G.P. Parravicini, Solid State Physics (San Diego: Academic, 2000), pp. 425–445.

    Book  Google Scholar 

  39. F. Bassani and G.P. Parravicini, Electronic States and Optical Transitions in Solids (Oxford: Pergamon, 1975), pp. 149–154.

    Google Scholar 

  40. H. Rathgen and M.I. Katsnelson, Phys. Scr. 109, 170 (2004).

    Article  Google Scholar 

  41. E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).

    Article  Google Scholar 

  42. Y.H. Kim and A. Görling, Phys. Rev. B 66, 035114 (2002).

    Article  Google Scholar 

  43. Y.H. Kim and A. Gorling, Phys. Rev. Lett. 89, 096402 (2002).

    Article  Google Scholar 

  44. F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett. 91, 056402 (2003).

    Article  Google Scholar 

  45. S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.C. Weissker, A. Rubio, G. Onida, R. Del Sole, and R.W. Godby, Phys. Rev. B 69, 155112 (2004).

    Article  Google Scholar 

  46. V.U. Nazarov and G. Vignale, Phys. Rev. Lett. 107, 216402 (2011).

    Article  Google Scholar 

  47. Z.H. Yang, Y. Li, and C.A. Ullrich, J. Chem. Phys. 137, 014513 (2012).

    Article  Google Scholar 

  48. J.E. Bates and F. Furche, J. Chem. Phys. 137, 164105 (2012).

    Article  Google Scholar 

  49. Z.H. Yang and C.A. Ullrich, Phys. Rev. B 87, 195204 (2013).

    Article  Google Scholar 

  50. P.E. Trevisanutto, A. Terentjevs, L.A. Constantin, V. Olevano, and F.D. Sala, Phys. Rev. B 87, 205143 (2013).

    Article  Google Scholar 

  51. J.E. Sipe and E. Ghahramani, Phys. Rev. B 48, 11705 (1993).

    Article  Google Scholar 

  52. C. Aversa and J.E. Sipe, Phys. Rev. B 52, 14636 (1995).

    Article  Google Scholar 

  53. S. Sharma, J.K. Dewhurst, and C. Ambrosch-Draxl, Phys. Rev. B 67, 165332 (2003).

    Article  Google Scholar 

  54. S. Sharma and C. Ambrosch-Draxl, Phys. Scr. T. 109, 128 (2004).

    Article  Google Scholar 

  55. A. H. Reshak (Ph.D. thesis, Indian Institute of Technology-Rookee, 2005) pp. 18–120.

  56. A.H. Reshak, J. Chem. Phys. 125, 014708 (2006).

    Article  Google Scholar 

  57. S.N. Rashkeev and W.R.L. Lambrecht, Phys. Rev. B 63, 165212 (2001).

    Article  Google Scholar 

  58. S.N. Rashkeev, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 57, 3905 (1998).

    Article  Google Scholar 

  59. C. Ambrosch-Draxl and J. Sofo, Comput. Phys. Commun. 175, 1 (2006).

    Article  Google Scholar 

  60. T. Steiner, Acta Crystallogr. C 56, 874 (2000).

    Article  Google Scholar 

  61. R.Y. Boyd, Principles of Nonlinear Optics (New York: Academic, 1982), pp. 1–65.

    Google Scholar 

  62. W.D. Cheng, S.P. Huang, D.S. Wu, X.D. Li, Y.Z. Lan, F.F. Li, J. Shen, H. Zhang, and Y.J. Gong, Appl. Phys. Lett. 87, 141905 (2005).

    Article  Google Scholar 

  63. S.P. Huang, D.S. Wu, J. Shen, W.D. Cheng, Y.Z. Lan, F.F. Li, H. Zhang, and Y.J. Gong, J. Phys.: Condens. Matter 18, 5535 (2006).

    Google Scholar 

  64. S.P. Huang, W.D. Cheng, D.S. Wu, X.D. Li, Y.Z. Lan, F.F. Li, J. Shen, H. Zhang, and Y.J. Gong, Appl. Phys. Lett. 99, 013516 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dadsetani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadsetani, M., Omidi, A.R. First Principles Study of Linear and Nonlinear Optical Properties of 2-Aminofluorene (C13H11N). J. Electron. Mater. 44, 4940–4952 (2015). https://doi.org/10.1007/s11664-015-4060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4060-6

Keywords

Navigation