Skip to main content

Advertisement

Log in

Study of the Electrocaloric Effect in the Relaxor Ferroelectric Ceramic 0.75PMN-0.25PT

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrocaloric (EC) cooling based on the ability of materials to change temperature by applying an electric field under adiabatic conditions is a relatively new and challenging direction in ferroelectrics research. Analytical and simulation data for the electrocaloric effect (ECE) in 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 (0.75PMN–0.25PT) bulk ceramic samples are reported. The adiabatic temperature change (ΔT) due to a change of the external electric field has been calculated indirectly from the entropy change. The temperature change increases with an increase in the applied electric field and reaches a maximum of 2.1 K in 25 kV/cm electric field shift near the Curie temperature of 398 K; that is, the cooling ΔT per unit field (MV/m) is 0.896 × 10−6 m K/V. This value is significantly large for bulk ceramics and makes the compound promising for room-temperature electric cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Gschneidner, V.K. Pecharsky, and A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).

    Article  Google Scholar 

  2. S.M. Benford and G.V. Brown, J. Appl. Phys. 52, 2110 (1981).

    Article  Google Scholar 

  3. S.G. Lu and Q. Zhang, J. Adv. Dielectr. 2, 1230011 (2012).

    Article  Google Scholar 

  4. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, and N.D. Mathur, Science 311, 1270 (2006).

    Article  Google Scholar 

  5. A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, and N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006).

    Article  Google Scholar 

  6. T.M. Correia, J.S. Young, R.W. Whatmore, J.F. Scott, N.D. Mathur, and Q. Zhang, Appl. Phys. Lett. 95, 182904 (2009).

    Article  Google Scholar 

  7. S.G. Lu, H. Xiong, A. Wei, X. Li, and Q.M. Zhang, J. Adv. Dielectr. 3, 1350015 (2013).

    Article  Google Scholar 

  8. G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M.R. Gadinski, M.A. Haque, Q. Zhang, and Q. Wang, Adv. Mater. 27, 1450 (2015).

    Article  Google Scholar 

  9. Q. Li, G. Zhang, X. Zhang, S. Jiang, Y. Zeng, and Q. Wang, Adv. Mater. 27, 2236 (2015).

    Article  Google Scholar 

  10. Y. Bai, G.P. Zheng, and S.Q. Shi, Appl. Phys. Lett. 96, 192902 (2010).

    Article  Google Scholar 

  11. S.G. Lu, B. Rozic, Q. Zhang, Z. Kutnjak, X.Y. Li, L. Gorny, and M.R. Lin, Appl. Phys. Lett. 97, 162904 (2010).

    Article  Google Scholar 

  12. G. Akcay, S.P. Alpay, J.V. Mantese, and G.A. Rossetti, Appl. Phys. Lett. 90, 252909 (2007).

    Article  Google Scholar 

  13. L.B. Kong, J. Ma, W. Zhu, and O.K. Tan, J. Alloys Compd. 336, 242 (2002).

    Article  Google Scholar 

  14. L. Dabin, L. Zhenrong, L. Fei, X. Zhuo, and Y. Xi, J. Alloys Compd. 489, 115 (2010).

    Article  Google Scholar 

  15. L. Luo, H. Chen, Y. Zhu, W. Li, H. Luo, and Y. Zhang, J. Alloys Compd. 509, 8149 (2011).

    Article  Google Scholar 

  16. S. Liu and Y. Li, Mater. Sci. Eng., B 113, 46 (2004).

    Article  Google Scholar 

  17. A.A. Bokov and Z.G. Ye, J. Phys.: Condens. Matter 12, 541 (2000).

    Google Scholar 

  18. B. Rožič, B. Malič, H. Uršič, J. Holc, M. Kosec, B. Neese, Q.M. Zhang, and Z. Kutnjak, Ferroelectrics 405, 26 (2010).

    Article  Google Scholar 

  19. C. Huang, Y. Wang, Z. Tang, X. Liao, S. Yang, and X. Song, J. Alloys Compd. 630, 244 (2015).

    Article  Google Scholar 

  20. R. Pirc, Z. Kutnjak, R. Blinc, and Q.M. Zhang, J. Appl. Phys. 110, 074113 (2011).

    Article  Google Scholar 

  21. S.G. Lu, B. Rozic, Q.M. Zhang, Z. Kutnjak, and R. Pirc, Appl. Phys. A 107, 559 (2012).

    Article  Google Scholar 

  22. J. Karthik and L.W. Martin, Appl. Phys. Lett. 99, 032904 (2011).

    Article  Google Scholar 

  23. G. Ackay, S.P. Alpay, J.V. Mantese, and G.A. Rossetti, J. Appl. Phys. 103, 024104 (2008).

    Article  Google Scholar 

  24. Z.J. Mo, J. Shen, L.Q. Yan, J.F. Wu, C.C. Tang, and B.G. Shen, J. Alloys Compd. 572, 1 (2013).

    Article  Google Scholar 

  25. M.E. Wood and W.H. Potter, Cryogenics 25, 667 (1985).

    Article  Google Scholar 

  26. M.A. Hamad, Phase Transit. 85, 159 (2012).

    Article  Google Scholar 

  27. G. Sebald, S. Pruvost, L. Seveyrat, L. Lebrun, D. Guyomar, and B. Guiffard, J. Eur. Ceram. Soc. 27, 4021 (2007).

    Article  Google Scholar 

  28. S.G. Lu and Q.M. Zhang, Adv. Mater. 21, 1983 (2009).

    Article  Google Scholar 

  29. B. Rožič, M. Kosec, H. Uršič, J. Holc, B. Malič, Q.M. Zhang, R. Blinc, R. Pirc, and Z. Kutnjak, J. Appl. Phys. 110, 064118 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kriaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kriaa, I., Abdelmoula, N., Maalej, A. et al. Study of the Electrocaloric Effect in the Relaxor Ferroelectric Ceramic 0.75PMN-0.25PT. J. Electron. Mater. 44, 4852–4856 (2015). https://doi.org/10.1007/s11664-015-4051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4051-7

Keywords

Navigation