Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Influence of Synthesis Procedure on the Microstructure and Thermoelectric Properties of p-Type Skutterudite Ce0.6Fe2Co2Sb12

  • 152 Accesses

  • 3 Citations

Abstract

We have investigated p-type skutterudite samples with the nominal composition Ce0.6Co2Fe2Sb12 synthesized from elementary constituents by gas atomization and conventional melting, and also those synthesized from ternary and binary phases such as Fe x Co1−x Sb2 and CeSb2, respectively, which were mixed and subsequently ball-milled. We conducted measurements of the temperature-dependent transport properties (Seebeck coefficient, thermal/electrical conductivity) and carried out scanning electron microscope analysis, electron probe micro-analysis and powder x-ray diffraction to obtain information about microstructure and elementary distribution of the phases. We show that the presented synthesis methods each possess particular strengths but ultimately, however, lead to different final compositions of the skutterudite phase and secondary phases, which significantly influence the thermoelectric properties of the material. Material prepared using an educt method gave the best thermoelectric properties with a peak ZT of 0.7. Furthermore, we show that even an apparent homogeneous skutterudite area within the material exhibits varying stoichiometry in each grain even though they conform to the solubility range of cerium in this p-type skutterudite. Moreover, we show that marcasite is preferred as an educt over the arsenopyrite phase and discuss the formation of the p-type skutterudite phase with these synthesis techniques.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. Uher, Modules, Systems, and Applications in Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 2012), p. 10.1.

  2. 2.

    H. Li, X. Tang, Q. Zhang, and C. Uher, Appl. Phys. Lett. 93, 252109 (2008).

  3. 3.

    G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, and C. Uher, J. Mater. Chem. A 1, 12657 (2013).

  4. 4.

    H. Uchida, V. Crnko, H. Tanaka, A. Kasama, and K. Matsubara, XVII International Conference on Thermoelectrics, 1998.

  5. 5.

    Q. Jie, H. Wang, W. Liu, H. Wang, G. Chen, and Z. Ren, Phys. Chem. Chem. Phys. 15, 6809 (2013).

  6. 6.

    L. Chen, X. Tang, T. Goto, and T. Hirai, J. Mater. Res. 15, 2276 (2000).

  7. 7.

    X.F. Tang, L.D. Chen, T. Goto, T. Hirai, and R.Z. Yuan, J. Mater. Res. 17, 2953 (2002).

  8. 8.

    J.P. Fleurial, T. Caillat, and A. Borshchevsky, XVI International Conference on Thermoelectrics, 1997.

  9. 9.

    X. Tang, L. Chen, T. Goto, and T. Hirai, J. Mater. Res. 16, 837 (2001).

  10. 10.

    B. Chen, J.H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.P. Fleurial, T. Caillat, and A. Borshchevsky, Phys Rev B 55, 1476 (1997).

  11. 11.

    A. May and G.J. Snyder, Materials, Preparation, and Characterization in Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 2012), p. 11.1.

  12. 12.

    H. Kitagawa, M. Hasaka, T. Morimura, H. Nakashima, and S. Kondo, Mater. Res. Bull. 35, 185 (2000).

  13. 13.

    G. Brostigen and A. Kjekshus, Acta Chem. Scand. 24, 2983 (1970).

  14. 14.

    R. Hu, V.F. Mitrović, and C. Petrovic, Phys. Rev. B 74, 195130 (2006).

  15. 15.

    A. Kjekshus and T. Rakke, Acta Chem. Scand. 31, 2983 (1977).

  16. 16.

    J.B. Goodenough, J. Solid State Chem. 5, 144 (1972).

  17. 17.

    F. Hulliger and E. Mooser, J. Phys. Chem. Solids 26, 429 (1965).

  18. 18.

    G. Brostigen and A. Kjekshus, Acta Chem. Scand. 24, 2993 (1970).

  19. 19.

    X. Shi, W. Zhang, L.D. Chen, and J. Yang, Phys. Rev. Lett. 95, 185503 (2005).

  20. 20.

    Z.G. Mei, W. Zhang, L.D. Chen, and J. Yang, Phys. Rev. B 74, 153202 (2006).

  21. 21.

    A. Bhaskar, Y.W. Yang, and C.J. Liu, Ceram. Int. 41, 6381 (2015).

  22. 22.

    P. Amornpitoksuk, H. Li, J.C. Tedenac, S.G. Fries, and D. Ravot, Intermetallics 15, 475 (2007).

  23. 23.

    D. Bérardan, C. Godart, E. Alleno, E. Leroy, and P. Rogl, J. Alloy. Compd. 350, 30 (2003).

  24. 24.

    H.W. Kerr and W. Kurz, Int. Mater. Rev. 41, 129 (1996).

  25. 25.

    H. Okamoto, JPE 22, 88 (2001).

  26. 26.

    A.M. Gusak, Diffusion-Controlled Solid State Reactions: In Alloys, Thin-Films, and Nanosystems, ed. A.M. Gusak (Weinheim: Wiley, 2010), p. 37.

  27. 27.

    P.G.-Y. Huang, C.-H. Lu, and T.W.-H. Sheu, Mater. Sci. Eng. B 107, 39 (2004).

  28. 28.

    A. Khawam and D.R. Flanagan, J. Phys. Chem. B 110, 17315 (2006).

  29. 29.

    R. Liu, P. Qiu, X. Chen, X. Huang, and L. Chen, J. Mater. Res. 26, 1813 (2011).

  30. 30.

    L. Nordström and D.J. Singh, Phys. Rev. B 53, 1103 (1996).

  31. 31.

    G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).

Download references

Author information

Correspondence to G. Skomedal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sesselmann, A., Skomedal, G., Middleton, H. et al. The Influence of Synthesis Procedure on the Microstructure and Thermoelectric Properties of p-Type Skutterudite Ce0.6Fe2Co2Sb12 . Journal of Elec Materi 45, 1397–1407 (2016). https://doi.org/10.1007/s11664-015-4046-4

Download citation

Keywords

  • p-Type skutterudite
  • synthesis
  • microstructure
  • peritectic reaction
  • transformation rate