Skip to main content
Log in

Temperature-Dependent Modeling and Performance Evaluation of Multi-Walled CNT and Single-Walled CNT as Global Interconnects

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The influence of temperature on multi-walled carbon nanotube (MWCNT) interconnects have been studied. A temperature-dependent equivalent circuit model is presented for the impedance parameters of MWCNT bundle interconnects that captures various electron–phonon scattering mechanisms as a function of temperature. To estimate the performance of MWCNT bundle interconnects, the signal delay, power dissipation and power delay product (PDP) were simulated based on a temperature-dependent model that results in improvement in the delay, power and PDP estimation accuracy compared to the temperature-independent model. The results revealed that the power delay product of MWCNT bundle interconnects increases with increasing temperature from 200 K to 450 K for three different technology nodes, i.e., 32 nm, 22 nm and 16 nm, based upon a 1000-μm interconnect length. A similar analysis was performed for single-walled carbon nanotube (SWCNT) bundle interconnects and the results are compared with MWCNT bundle interconnects, indicating that the delay, power and power delay product (PDP) also increased with increasing temperature from 200 K to 450 K. The interconnects of the MWCNT bundle interconnects gave a better performance in terms of delay, power and PDP as compared to the SWCNT bundle interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, J. Appl. Phys. 97, 023706/1 (2005).

  2. A. Naeemi, R. Sarvari, and J.D. Meindl, Electron. Device Lett. 26, 84 (2005).

  3. H. Li, C. Xu, N. Srivastava, and K. Banerjee, IEEE Trans. Electron Devices 56, 1799 (2009).

    Article  Google Scholar 

  4. N. Srivastava and K. Banerjee, IEEE/ACM Intl. Conf. on ICCAD (2005), pp. 383–390.

  5. Mayank K. Rai, J. Comput. Electron. 12, 796 (2013).

    Article  Google Scholar 

  6. Q. Jiang, Y. Zhao, X.Y. Lu, Q. Zhan, and Y.L. Zhou, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-006-7473-4.

  7. N. Srivastava, H. Li, F. Kreupl, and K. Banerjee, IEEE Trans. Nanotechnol. 8, 542 (2009).

    Article  Google Scholar 

  8. P.J. Burke, IEEE Trans. Nanotechnol. 1, 129 (2002).

    Article  Google Scholar 

  9. A. Hosseini, Microelectron. Eng. 87, 1955 (2010).

    Article  Google Scholar 

  10. E. Pop, J. Appl. Phys. 101, 093710 (2007).

    Article  Google Scholar 

  11. E. Pop, D. Mann, J. Reifenberg, K. Goodson, and H. Dai, Technical Digest of IEEE International Electron Device Meeting 2005 IEDM (2005), pp. 254–256.

  12. A.G. Chiarillo, IEEE Electron Devices Lett. 55, 97 (2010).

    Google Scholar 

  13. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, and H. Park, Nature 411, 665 (2001).

    Article  Google Scholar 

  14. H. Li, W.Y. Yin, K. Banerjee, and J.F. Mao, IEEE Trans. Electron Devices 55, 1328 (2008).

    Article  Google Scholar 

  15. M. Sahoo and H. Rahaman, IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO) (2013), pp. 200–203.

  16. D. Rossi, IEEE Trans. on Nanotechnol. 6, 133 (2007).

    Article  Google Scholar 

  17. M. Naeemi, IEEE Electron Device Lett. 27, 338 (2006).

    Article  Google Scholar 

  18. M.K. Majumder, P.K. Das, and B.K. Kaushik, Microelectron. Reliab. 54(11), 2570 (2014).

  19. M.K. Majumder, N.D. Pandya, B.K. Kaushik, and S.K. Manhas, IEEE Electron Device Lett. 33, 1080 (2012).

  20. A. Srivastav, Y. Xu, and A.K. Sharma, J. Nanophotonics 4(1), 041690 (2010).

  21. Y.G. Yoon, P. Delaney, and S.G. Louie, Phys. Rev. B 66(7), 073407/1 (2002).

  22. ITRS, International Technology Roadmap for Semiconductor, Edition (2009), http://public.itrs.net. Accessed 4 Sept 2014

  23. B. Kumar, B.K. Kaushik, and Y.S. Negi, J. Mater. Sci. Mater. Electron. 25, 1 (2014)

  24. P.G. Collins and P. Avouris, Appl. Phys. A, Solids Surf. 74(3), 329 (2002)

  25. J.F. Xu, H. Li, W.Y. Yin, J.F. Mao, and L.W. Li, IEICE Trans. Electron. E90-C, 179 (2007).

  26. Predictive technology model [Online], www.ptm.asu.edu. Accessed 12 Jan 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmjit Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Raj, B. Temperature-Dependent Modeling and Performance Evaluation of Multi-Walled CNT and Single-Walled CNT as Global Interconnects. J. Electron. Mater. 44, 4825–4835 (2015). https://doi.org/10.1007/s11664-015-4040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4040-x

Keywords

Navigation