Skip to main content

Advertisement

Log in

Effect of Titanium Content on Dielectric and Energy Storage Properties of (Pb,La,Sr)(Zr,Sn,Ti)O3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dielectric and energy storage properties of lead lanthanum strontium zirconate stannate titanate [(Pb0.92La0.04Sr0.02)((Zr0.70Sn0.30)1−x Ti x )O3] ceramics were investigated as a function of x (0.07 ≤ x ≤ 0.13). With increasing titanium content, the tolerance factor increased, resulting in decreased stability of antiferroelectric phase in the ceramics. As the titanium content was increased, the maximum dielectric constant increased and the temperature of the dielectric maximum shifted to lower values. According to the polarization–electric field hysteresis loops, both the charged and discharged energy densities increased consistently with the increase of titanium content. The unreleased energy densities also showed a systematic trend. From charge–discharge measurements based on the resistance load circuit, the released energy densities and power densities as a function of discharge time were determined over the investigated composition range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Wang, T.Q. Yang, S.C. Chen, and G. Li, Mater. Res. Bull. 48, 3847 (2013).

    Article  Google Scholar 

  2. K. Yao, IEEE Trans. Ultrason. Ferroelectr. 58, 1968 (2011).

    Article  Google Scholar 

  3. Q.F. Zhang, T.Q. Yang, Y.Y. Zhang, J.F. Wang, and X. Yao, Appl. Phys. Lett. 102, 222904 (2013).

    Article  Google Scholar 

  4. L. Shebanov, M. Kusnetsov, and A. Sternberg, J. Appl. Phys. 76, 4301 (1994).

    Article  Google Scholar 

  5. S.E. Park, K. Markowski, S. Yoshikawa, and L.E. Cross, J. Am. Ceram. Soc. 80, 407 (1997).

    Article  Google Scholar 

  6. K. Markowski, S.E. Park, S. Yoshikawa, and L.E. Cross, J. Am. Ceram. Soc. 79, 3294 (1996).

    Article  Google Scholar 

  7. L. Wang, Q. Li, L.H. Xue, and Y.L. Zhang, J. Phys. Chem. Solids 68, 2008 (2007).

    Article  Google Scholar 

  8. Q. Zhang, X.L. Liu, Y. Zhang, X.Z. Song, J. Zhu, I. Baturin, and J.F. Chen, Ceram. Int. 41, 3030 (2015).

    Article  Google Scholar 

  9. M.J. Pan, S.E. Park, K.A. Markowski, W.S. Hackenberger, S. Yoshikawa, and L.E. Cross, Ferroelectrics 215, 153 (1998)

  10. R.D. Shannon, Acta Cryst. A32, 751 (1976).

    Article  Google Scholar 

  11. S. Švarcová, K. Wiik, J. Tolchard, H.J.M. Bouwmeester, and T. Grande, Solid State Ion. 178, 1787 (2008).

    Article  Google Scholar 

  12. X.H. Hao and J.W. Zhai, J. Phys. D 40, 7447 (2007).

    Article  Google Scholar 

  13. I. Burn and D.M. Smyth, J. Mater. Sci. 7, 339 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Zhang, Y., Chen, Y. et al. Effect of Titanium Content on Dielectric and Energy Storage Properties of (Pb,La,Sr)(Zr,Sn,Ti)O3 Ceramics. J. Electron. Mater. 44, 4819–4824 (2015). https://doi.org/10.1007/s11664-015-4038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4038-4

Keywords

Navigation