Skip to main content
Log in

Structural Characterization and Compositional Dependence of Optical Properties of Ge16Se52Te32−x Sb x (x = 0, 2, 4, 6, 8) Glassy Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Antimony-substituted Ge-Se-Te quaternary chalcogenide glasses have been synthesized using the melt quench technique. The bonding arrangements in the glassy matrices have been studied through infrared spectra in the spectral region from 50 cm−1 to 300 cm−1. The effect of Sb addition on the optical properties has also been studied using ultraviolet–visible–infrared (UV–Vis–IR) spectroscopy on thin films of uniform thickness. The materials possess high refractive index and tunable bandgap with low values of optical loss. They also possess good infrared transparency regions, high refractive index, and low optical bandgap, making them suitable for use in photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. El-Sayed, Chalcogenide Lett. 6, 241 (2009).

    Google Scholar 

  2. M.A.M. Khan, M. Zulfequar, and S. Kumar, J. Mod. Opt. 50, 251 (2003).

    Google Scholar 

  3. D.E. Carlson and C.R. Wronski, Appl. Phys. Lett. 28, 671 (1976).

    Article  Google Scholar 

  4. T. Ohta, J. Optoelectron. Adv. Mater. 3, 609 (2001).

    Google Scholar 

  5. N. Sharma, S. Sharda, V. Sharma, and P. Sharma, Defect Diffus. Forum 316, 37 (2011).

    Article  Google Scholar 

  6. J.S. Sanghera and I.D. Aggarwal, J. Non-Cryst. Solids 256, 616 (1999).

    Google Scholar 

  7. B.T. Kolomieto, Phys. Status Solidi 7, 713 (1964).

    Article  Google Scholar 

  8. N. Sharma, S. Sharda, V. Sharma, and P. Sharma, Chalcogenide Lett. 9, 355 (2012).

    Google Scholar 

  9. G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, J. Appl. Phys. 110, 043536 (2011).

    Article  Google Scholar 

  10. R. Tintu, V.P.N. Nampoori, P. Radhakrishanan, and S. Thomas, J. Phys. D 44, 025101 (2011).

    Article  Google Scholar 

  11. R.M. Mehta, G. Kaur, and P.C. Mathur, Phys. Rev. B 43, 12388 (1991).

    Article  Google Scholar 

  12. V. Modgil and V.S. Rangra, J. Mater. Sci. 25, 5428 (2014).

    Google Scholar 

  13. V. Pamukchieva, K. Todorova, O.C. Mocioiu, M. Zaharescu, A. Szekeres, and M. Gartner, J. Phys. Conf. Ser. 356, 012047 (2012).

    Article  Google Scholar 

  14. J. Bicerano and S.R. Ovshinsky, J. Non-Cryst. Solids 75, 169 (1985).

    Article  Google Scholar 

  15. P. Tronc, M. Bensoussan, A. Brenac, and C. Sebenne, Phys. Rev. B 8, 5947 (1973).

    Article  Google Scholar 

  16. G. Lucovsky, F.L. Galeener, R.C. Keezer, R.H. Geils, and H.A. Six, Phys. Rev. 10, 5134 (1974).

    Article  Google Scholar 

  17. T. Ohsaka, J. Non-Cryst. Solids 17, 121 (1975).

    Article  Google Scholar 

  18. A. Dahshan and K.A. Aly, Philos. Mag. 88, 361 (2008).

    Article  Google Scholar 

  19. A.A. Othman, K.A. Aly, and A.M. Abousehly, Thin Solid Films 515, 3507 (2007).

    Article  Google Scholar 

  20. I. Quiroga, C. Corredor, F. Bellido, J. Vazquez, P. Villares, and R. Jiménez-Garay, J. Non-Cryst. Solids 196, 183 (1996).

    Article  Google Scholar 

  21. G.R. Somyajulu, J. Chem. Phys. 28, 814 (1958).

    Article  Google Scholar 

  22. R. Kumar, P. Sharma, S.C. Katyal, and V.S. Rangra, J. Appl. Phys. 110, 013505 (2011).

    Article  Google Scholar 

  23. E.M. Sayed, Semicond. Sci. Technol. 18, 337 (2003).

    Article  Google Scholar 

  24. G.J. Ball and J.M. Chamberlain, J. Non-Cryst. Solids 29, 239 (1978).

    Article  Google Scholar 

  25. P. Sharma and S.C. Katyal, J. Non-Cryst. Solids 234, 3836 (2008).

    Article  Google Scholar 

  26. K.S. Andrikopoulos, S.N. Yannopoulos, G.A. Voyiatzis, A.V. Kolobov, M. Ribes, and J. Tominaga, J. Phys. Condens. Matter 18, 965 (2006).

    Article  Google Scholar 

  27. P. Kumar, T.S. Sathiataj, and R. Thangraj, Philos. Mag. Lett. 90, 183 (2010).

    Article  Google Scholar 

  28. A.V. Nidhi, V. Modgil, and V.S. Rangra, Chalcogenide Lett. 11, 365 (2014).

    Google Scholar 

  29. N. Sharma, S. Sharda, V. Sharma, and P. Sharma, J. Non-Cryst. Solids 375, 114 (2013).

    Article  Google Scholar 

  30. J.C. Manifacer, J. Gasiot, and J.P. Fillard, J. Phys. E: Sci. Instrum. 9, 1002 (1976).

    Article  Google Scholar 

  31. R. Swanepoel, J. Phys. E 16, 1214 (1983).

    Article  Google Scholar 

  32. J. Tauc, The Optical Properties of Solids (Amsterdam: North-Holland, 1970), pp. 171–180.

    Google Scholar 

  33. F. Urbach, Phys. Rev. Lett. 92, 1324 (1953).

    Google Scholar 

  34. N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford: Oxford University Press, 1971), p. 442.

    Google Scholar 

  35. M. Kastner, Phys. Rev. Lett. 28, 355 (1972).

    Article  Google Scholar 

  36. A. Ganjoo and H. Jain, Phys. Rev. B 74, 024201 (2006).

    Article  Google Scholar 

  37. M.M. Wakkad, E.K.H. Shoker, and S.H. Mohamed, J. Non-Cryst. Solids 265, 157 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Modgil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaistha, A., Modgil, V. & Rangra, V. Structural Characterization and Compositional Dependence of Optical Properties of Ge16Se52Te32−x Sb x (x = 0, 2, 4, 6, 8) Glassy Alloys. J. Electron. Mater. 44, 4747–4753 (2015). https://doi.org/10.1007/s11664-015-4035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4035-7

Keywords

Navigation