Skip to main content
Log in

Nanostructured TTT(TCNQ)2 Organic Crystals as Promising Thermoelectric n-Type Materials: 3D Modeling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript


The thermoelectric properties of quasi-one-dimensional TTT(TCNQ)2 organic crystals have been investigated to assess the prospect of using this type of compound as an n-type thermoelectric material. A three-dimensional (3D) physical model was elaborated. This takes into account two of the most important interactions of conduction electrons with longitudinal acoustic phonons—scattering of the electrons’ by neighboring molecular chains and scattering by impurities and defects. Electrical conductivity, thermopower, power factor, electronic thermal conductivity, and thermoelectric figure of merit in the direction along the conducting molecular chains were calculated numerically for different crystal purity. It was shown that in stoichiometric compounds the thermoelectric figure of merit ZT remains small even after an increase of crystal perfection. The thermoelectric properties may be significantly enhanced by simultaneous increases of crystal perfection and electron concentration. The latter can be achieved by additional doping with donors. For less pure crystals, the interaction with impurities dominates the weak interchain interaction and the simpler one-dimensional (1D) physical model is applicable. When the impurity scattering is reduced, the interchain interaction begins to limit carrier mobility and use of the 3D physical model is required. The optimum properties enabling prediction of ZT ∼ 1 were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. T. Takabatake, S. Koichiro, and T. Nakayama, Rev. Mod. Phys. 86, 669 (2014).

    Article  Google Scholar 

  2. M. Rowe, L. Zhou, and D. Banerjee, J. Electron. Mater. 44, 425 (2015).

    Article  Google Scholar 

  3. S. Xun, J. Yang, and J. Salvador, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  4. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  5. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  6. L. Weishu, H.S. Kim, S. Chen, and Q. Jie, Proc. Natl. Acad. Sci. USA 112, 3269 (2015).

    Article  Google Scholar 

  7. G. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).

    Article  Google Scholar 

  8. N. Toshima, K. Oshima, and H. Anno, Adv. Mater. 27, 2246 (2015).

    Article  Google Scholar 

  9. S.P. Ashby, J. García-Cañadas, G. Min, and Y. Chao, J. Electron. Mater. 42, 1495 (2013).

    Article  Google Scholar 

  10. Y. Wang, J. Zhou, and R. Yang, J. Phys. Chem. C 115, 24418 (2011).

    Article  Google Scholar 

  11. A. Casian, Thermoelectric Handbook, Macro to Nano, Chap.36, ed. D.M. Rowe (Boca Raton: CRC Press, 2006),

    Google Scholar 

  12. A. Casian and I. Sanduleac, J. Electron. Mater. 43, 3740 (2014).

    Article  Google Scholar 

  13. I.I. Sanduleac, A.I. Casian, and J. Pflaum, J. Nanoelectron. Optoelectron. 9, 247 (2014).

    Article  Google Scholar 

  14. A. Casian, J. Pflaum, and I. Sanduleac, J. Thermoelectr. 1, 16 (2015).

    Google Scholar 

  15. L. Buravov, O. Eremenko, R. Lyubovskii, and E. Yagubskii, J. Exp. Theor. Phys. 20, 208 (1974).

    Google Scholar 

  16. E. Conwell, Phys. Rev. B 22, 1761 (1980).

    Article  Google Scholar 

  17. M. Sing, U. Schwingenschlögl, R. Claessen, P. Blaha, J.M.P. Carmelo, L.M. Martelo, P.D. Sacramento, M. Dressel, and C.S. Jacobsen, Phys. Rev. B 68, 125111 (2003).

    Article  Google Scholar 

  18. G. Soda, D. Jerome, M. Weger, J. Alizon, J. Gallice, H. Robert, J.M. Fabre, and L. Giral, J. Phys. II Fr. 38, 931 (1977).

    Article  Google Scholar 

  19. I. Sanduleac, J. Thermoelectr. 4, 50 (2014).

    Google Scholar 

  20. I. Sanduleac, Mold. J. Phys. Sci. (2015), in press.

  21. L. Cano-Cortes, A. Dolfen, and J. Merino, Eur. Phys. J. B 56, 173 (2007).

    Article  Google Scholar 

Download references


The authors gratefully acknowledge support from the EU Commission FP7 program under the Grant No. 308768.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ionel Sanduleac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanduleac, I., Casian, A. Nanostructured TTT(TCNQ)2 Organic Crystals as Promising Thermoelectric n-Type Materials: 3D Modeling. J. Electron. Mater. 45, 1316–1320 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: