Skip to main content
Log in

Free-Standing Reduced Graphene Oxide Paper with High Electrical Conductivity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

With high carrier mobility and low cost, reduced graphene oxide (RGO) shows bright prospects for use in the field of thermoelectric materials. To investigate the intrinsic thermoelectric properties of RGO sheets, we prepared RGO papers which were reduced by HBr solution for 5 min, 20 min, and 60 min, respectively. Thermogravimetry analysis (TGA) and Raman analysis showed that the conjugated carbon network of graphene oxide (GO) was restored during the reduction process and the thermal stability of the RGO papers was much better than that of GO paper. The RGO paper that was reduced for 60 min and then annealed in Ar/H2 atmosphere exhibited the highest electrical conductivity of 3.22 × 105 S/m at 160°C. As the reduction degree of the RGO paper deepens, the Seebeck coefficient gradually transforms from positive to negative, indicating that the conduction type of RGO paper can be controlled by regulating the reduction degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Dreyer, S.J. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  Google Scholar 

  2. Y. Chen, B. Zhang, G. Liu, X.D. Zhuang, and E.T. Kang, Chem. Soc. Rev. 41, 4688 (2012).

    Article  Google Scholar 

  3. K.P. Loh, Q.L. Bao, P.K. Ang, and J.X. Yang, J. Mater. Chem. 20, 2277 (2010).

    Article  Google Scholar 

  4. F. Chen and N.J. Tao, Acc. Chem. Res. 42, 429 (2009).

    Article  Google Scholar 

  5. P.V. Kamat, J. Phys. Chem. Lett. 2, 242 (2011).

    Article  Google Scholar 

  6. C.H. Xu, B.H. Xu, Y. Gu, Z.G. Xiong, J. Sun, and X.S. Zhao, Energy Environ. Sci. 6, 1388 (2013).

    Article  Google Scholar 

  7. Y. Huang, J.J. Liang, and Y.S. Chen, Small 8, 1805 (2012).

    Article  Google Scholar 

  8. Y. Du, S.Z. Shen, W.D. Yang, R. Donelson, K.F. Cai, and P.S. Casey, Synth. Met. 161, 2688 (2012).

    Article  Google Scholar 

  9. T.O. Poehler and H.E. Katz, Energy Environ. Sci. 5, 8110 (2012).

    Article  Google Scholar 

  10. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  11. Y. Du, S.Z. Shen, K.F. Cai, and P.S. Casey, Prog. Polym. Sci. 37, 820 (2012).

    Article  Google Scholar 

  12. W.S. Liu, X. Yan, G. Chen, and Z.F. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  13. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, and D.Z. Wang, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  14. S.H. Hong, E.S. Kim, W.Y. Kim, S.J. Jeon, S.C. Lim, and K.H. Kim, Phys. Chem. Chem. Phys. 14, 13527 (2012).

    Article  Google Scholar 

  15. O.C. Compton and S.T. Nguyen, Small 6, 711 (2010).

    Article  Google Scholar 

  16. X. Wang, L.J. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).

    Article  Google Scholar 

  17. Y. Zhao, G.S. Tang, Z.Z. Yu, and J.S. Qi, Carbon 50, 3064 (2012).

    Article  Google Scholar 

  18. K.L. Xu, G.M. Chen, and D. Qiu, J. Mater. Chem. A 1, 12395 (2013).

    Article  Google Scholar 

  19. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, and A. Slesarev, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  20. L. Mahmoud, Y. Abdul Samad, M. Alhawari, B. Mohammad, K. Liao, and M. Ismail, J. Electron. Mater. 44, 420 (2014).

    Article  Google Scholar 

  21. S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, and H.M. Cheng, Carbon 48, 4466 (2010).

    Article  Google Scholar 

  22. J.F. Cardenas, Carbon 46, 1327 (2008).

    Article  Google Scholar 

  23. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G.S. Filho, and R. Saito, Carbon 40, 2043 (2002).

    Article  Google Scholar 

  24. X.C. Dong, Y.M. Shi, Y. Zhao, D.M. Chen, J. Ye, and Y.G. Yao, Phys. Rev. Lett. 102, 135501 (2009).

    Article  Google Scholar 

  25. X.W. Yang, J.W. Zhu, L. Qiu, and D. Li, Adv. Mater. 23, 2833 (2011).

    Article  Google Scholar 

  26. V. Štengl, Chem. Eur. J. 18, 14047 (2012).

    Article  Google Scholar 

  27. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, and G. Evmenenko, Nature 448, 457 (2007).

    Article  Google Scholar 

  28. S. Gilje, S. Han, M.S. Wang, K.L. Wang, and R.B. Kaner, Nano Lett. 7, 3394 (2007).

    Article  Google Scholar 

  29. C.Y. Liu, L. Miao, D.L. Hu, R. Huang, C.A.J. Fisher, and S. Tanemura, Phys. Rev. B 88, 205201 (2013).

    Article  Google Scholar 

  30. Y.X. Li, Z. Pan, Y.Y. Fu, Y. Chen, Z.Y. Xie, and B. Zhang, J. Polym. Sci. A Polym. Chem. 50, 1663 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51572049, 51562005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Liu, C., Miao, L. et al. Free-Standing Reduced Graphene Oxide Paper with High Electrical Conductivity. J. Electron. Mater. 45, 1290–1295 (2016). https://doi.org/10.1007/s11664-015-4000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4000-5

Keywords

Navigation