Transition Metal–MoS2 Reactions: Review and Thermodynamic Predictions

Abstract

Molybdenum disulfide is a layered transition-metal dichalcogenide semiconductor that is attracting renewed attention for its potential use in future nanoscale electronics, optoelectronics, catalysis, tribology, and other fields. In all of these cases, the interaction between MoS2 and various transition metals is very important. In this work we survey the thermodynamics of the metal–Mo–S systems and the anticipated reaction products from transition metals and MoS2. We examined over 200 references on the reactions between transitions metals (M) and MoS2, compiled thermodynamic data, and used the thermodynamic data to predict M–Mo–S ternary phase diagrams for systems without experimentally determined diagrams. Where possible, experimental literature on the interactions between metals and MoS2 was used to corroborate our predicted diagrams and stable reaction products. Both the previously reported and newly predicted M–Mo–S phase diagrams fall into three categories. In the first category, the metal is in thermodynamic equilibrium with MoS2. In another, there is a driving force for the metal to reduce MoS2, with tie lines to sulfides of the contact metal dominating the phase diagram. In a final category, there is a very stable solid solution or ternary phase that dominates the phase diagram. Better understanding of the phase equilibria in the M–Mo–S systems will aid research on the use of MoS2 in a variety of fields.

References

  1. 1.

    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005)

    Article  Google Scholar 

  2. 2.

    S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, ACS Nano 7, 2898 (2013)

    Article  Google Scholar 

  3. 3.

    S. McDonnell, R. Addou, C. Buie, R.M. Wallace, and C.L. Hinkle, ACS Nano 8, 2880 (2014)

    Article  Google Scholar 

  4. 4.

    S. Das, H.Y. Chen, A.V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2012)

    Article  Google Scholar 

  5. 5.

    C. Gong, L. Colombo, R.M. Wallace, and K. Cho, Nano Lett. 14, 1714 (2014)

    Article  Google Scholar 

  6. 6.

    J.R. Chen, P.M. Odenthal, A.G. Swartz, G.C. Floyd, H. Wen, K.Y. Luo, and R.K. Kawakami, Nano Lett. 13, 3106 (2013)

    Article  Google Scholar 

  7. 7.

    R. Ganatra and Q. Zhang, ACS Nano 8, 4074 (2014)

    Article  Google Scholar 

  8. 8.

    M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, and P. Barbara, Sci. Rep. 3, 1 (2013)

    Article  Google Scholar 

  9. 9.

    D.S. Tsai, D.H. Lien, M.L. Tsai, S.H. Su, K.M. Chen, J.J. Ke, Y.C. Yu, L.J. Li, and J.H. He, IEEE J. Sel. Top. Quantum 20, 3800206 (2014)

    Google Scholar 

  10. 10.

    P. Stoyanov, R.R. Chromik, D. Goldbaum, J.R. Lince, and X. Zhang, Surf. Coat. Technol. Lett. 40, 199 (2010)

    Google Scholar 

  11. 11.

    X.Z. Ding, X.T. Zeng, X.Y. Zeng, X.Y. He, and Z. Chen, Surf. Coat. Technol. 205, 224 (2010)

    Article  Google Scholar 

  12. 12.

    J.R. Lince, H.I. Kim, P.M. Adams, D.J. Dickrell, and M.T. Dugger, Thin Solid Films 517, 5516 (2009)

    Article  Google Scholar 

  13. 13.

    W. Chen, E.J.G. Santos, W. Zhu, E. Kaxiras, and Z. Zhang, Nano Lett. 13, 509 (2013)

    Article  Google Scholar 

  14. 14.

    B.G. Rao, H.S.S.R. Matte, P. Chaturbedy, and C.N.R. Rao, ChemPlusChem 78, 419 (2013)

    Article  Google Scholar 

  15. 15.

    T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, and I. Chorkendorff, Science 317, 100 (2007)

    Article  Google Scholar 

  16. 16.

    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010)

    Article  Google Scholar 

  17. 17.

    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  18. 18.

    S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong, C. Buie, J. Kim, C.L. Hinkle, M.J. Kim, and R.M. Wallace, ACS Nano 7, 10354 (2013)

    Article  Google Scholar 

  19. 19.

    W. Kautek, H. Gerischer, and H. Tributsch, J. Electrochem. Soc. 127, 2471 (1980)

    Article  Google Scholar 

  20. 20.

    K.K. Kam and B.A. Parkinson, J. Phys. Chem. 86, 463 (1982)

    Article  Google Scholar 

  21. 21.

    C.P. Lu, G. Li, J. Mao, L.M. Wang, and E.Y. Andrei, Nano Lett. 14, 4628 (2014)

    Article  Google Scholar 

  22. 22.

    H. Bergmann, B. Czeska, I. Haas, B. Mohsin, and K.H. Wandner, Gmelin Handbook of Inorganic and Organometallic Chemistry, vol. Molybdenum Supplement B7, 8th edn. (Springer, Berlin, 1992)

    Google Scholar 

  23. 23.

    Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11, 3768 (2011)

    Article  Google Scholar 

  24. 24.

    H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol. 7, 490 (2012)

    Article  Google Scholar 

  25. 25.

    K.F. Mak, K. He, J. Shan, and T.F. Heinz, Nat. Nanotechnol. 7, 494 (2012)

    Article  Google Scholar 

  26. 26.

    C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R.S. Ruoff, R.M. Wallace, K. Cho, X. Xu, and Y.J. Chabal, ACS Nano 7, 11350 (2013)

    Article  Google Scholar 

  27. 27.

    M.F. Cardinal, P.A. Castro, J. Baxi, H. Liang, and F.J. Williams, Surf. Coat. Technol. 204, 85 (2009)

    Article  Google Scholar 

  28. 28.

    L. Shi, C. Sun, and W. Liu, Appl. Surf. Sci. 254, 6880 (2008)

    Article  Google Scholar 

  29. 29.

    J. Nowotny, C.C. Sorrell, L.R. Sheppard, and T. Bak, Catal. Hydrogen Energy 30, 521 (2005)

    Article  Google Scholar 

  30. 30.

    J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Chakthranont, and T.F. Jaramillo, ACS Catal. 4, 3957 (2014)

    Article  Google Scholar 

  31. 31.

    J. Bonde, P.G. Moses, T.F. Jaramillo, J.K. Nørskov, and I. Chorkendorff, Faraday Discuss. 140, 219 (2009)

    Article  Google Scholar 

  32. 32.

    O.Y. Gutiérrez, S. Singh, E. Schachtl, J. Kim, E. Kondratieva, J. Hein, and J.A. Lercher, ACS Catal. 4, 1487 (2014)

    Article  Google Scholar 

  33. 33.

    J. Lince, D. Carré, and P. Fleischauer, Phys. Rev. B 36, 1647 (1987)

    Article  Google Scholar 

  34. 34.

    J.F. McGilp and I.T. McGovern, J. Vac. Sci. Technol. B 3, 1641 (1985)

    Article  Google Scholar 

  35. 35.

    J.F. McGilp, J. Mater. Res. 2, 516 (1987)

    Article  Google Scholar 

  36. 36.

    V.L. Kalikhman and Y.S. Umanskiĭ, Sov. Phys. Uspekhi 15, 728 (1973)

    Article  Google Scholar 

  37. 37.

    W. Jaegermann and H. Tributsch, Prog. Surf. Sci. 29, 1 (1988)

    Article  Google Scholar 

  38. 38.

    A.N. Zelikman, G.V. Indenbaum, M.V. Teslitskaya, and V.P. Shalankova, Kristallografiya 14, 795 (1969)

    Google Scholar 

  39. 39.

    W.B. Jensen, J. Chem. Educ. 80, 952 (2003)

    Article  Google Scholar 

  40. 40.

    A.C. Lawson, Mater. Res. Bull. 7, 773 (1972)

    Article  Google Scholar 

  41. 41.

    R. Chevrel, M. Sergent, and J. Prigent, J. Solid State Chem. 3, 515 (1971)

    Article  Google Scholar 

  42. 42.

    A.M. Umarji, G.V.S. Rao, M.P. Janawadkar, and T.S. Radhakrishnan, Solid State Commun. 37, 1 (1981)

    Article  Google Scholar 

  43. 43.

    P. Vaqueiro, M.L. Kosidowski, and A.V. Powell, Chem. Mater. 14, 1201 (2002)

    Article  Google Scholar 

  44. 44.

    J. Guillevic, J.Y.L. Marouille, and D. Grandjean, Acta Crystallogr. B 30, 111 (1974)

    Article  Google Scholar 

  45. 45.

    K. Anzenhofer and J.J. De Boer, Acta Crystallogr. B B25, 1420 (1969)

    Google Scholar 

  46. 46.

    R. Chevrel, M. Sergent, J.L. Meury, and D.T. Quan, J. Solid State Chem. 10, 260 (1974)

    Article  Google Scholar 

  47. 47.

    J. Guillevic, O. Bars, and D. Grandjean, Acta Crystallogr. B 32, 1338 (1976)

    Article  Google Scholar 

  48. 48.

    R. Chevrel, J. Guillevic, and M. Sergent, C. R. Acad. Sci. Paris C 271, 1240 (1970)

    Google Scholar 

  49. 49.

    A. Oshima, E. Ike, H. Hinode, and M. Wakihara, Thermochim. Acta 191, 341 (1991)

    Article  Google Scholar 

  50. 50.

    A. Hårsta and E. Wennebo, Acta Chem. Scand. A 35, 227 (1981)

    Article  Google Scholar 

  51. 51.

    V.L. Kalikhman and A.A. Golubnichaya, Sov. Phys. Crystallogr. 28, 801 (1983)

    Google Scholar 

  52. 52.

    A.M. Umarji, G.V.S. Rao, M.P. Janawadkar, and T.S. Radhakrishnan, J. Phys. Chem. Solids 41, 421 (1980)

    Article  Google Scholar 

  53. 53.

    R. de Jonge, T.J.A. Popma, G.A. Wiegers, and F. Jellinek, J. Solid State Chem. 2, 188 (1970)

    Article  Google Scholar 

  54. 54.

    J. Guillevic, M.O. Bars, and D. Grandjean, J. Solid State Chem. 7, 158 (1973)

    Article  Google Scholar 

  55. 55.

    A. Perrin, M. Sergent, and O. Fischer, Mater. Res. Bull. 13, 259 (1978)

    Article  Google Scholar 

  56. 56.

    M. Saeki and M. Onoda, J. Less Common Met. 135, L1 (1987)

    Article  Google Scholar 

  57. 57.

    M. Saeki and M. Onoda, Chem. Lett. 16, 1353 (1987)

    Article  Google Scholar 

  58. 58.

    H. Wada and M. Onoda, J. Less Common Met. 135, 205 (1987)

    Article  Google Scholar 

  59. 59.

    E.A. Marseglia, Int. Rev. Phys. Chem. 3, 177 (1983)

    Article  Google Scholar 

  60. 60.

    C.N.R. Rao and K.P.R. Pisharody, Prog. Solid State Chem. 10, 207 (1976)

    Article  Google Scholar 

  61. 61.

    H. Wada, M. Onoda, H. Nozaki, and I. Kawada, J. Solid State Chem. 63, 369 (1986)

    Article  Google Scholar 

  62. 62.

    V. Ivanovskaya, A. Zobelli, A. Gloter, N. Brun, V. Serin, and C. Colliex, Phys. Rev. B 78, 134104 (2008)

    Article  Google Scholar 

  63. 63.

    M. Kamaratos and C. Papageorgopoulos, Solid State Commun. 61, 567 (1987)

    Article  Google Scholar 

  64. 64.

    J.S. Zabinski and B.J. Tatarchuk, Mater. Res. Soc. Symp. Proc. 140, 239 (1988)

    Article  Google Scholar 

  65. 65.

    R. Chevrel, M. Sergent, and J. Prigent, Mater. Res. Bull. 9, 1487 (1974)

    Article  Google Scholar 

  66. 66.

    R. Baillif, K. Yvon, R. Flükiger, and J. Muller, J. Low Temp. Phys. 37, 231 (1979)

    Article  Google Scholar 

  67. 67.

    K. Yvon, A. Paoli, R. Flükiger, and R. Chevrel, Acta Crystallogr. B 33, 3066 (1977)

    Article  Google Scholar 

  68. 68.

    V.G.H. Moh, Top. Curr. Chem. 76, 107 (1978)

    Article  Google Scholar 

  69. 69.

    A. Hårsta, J. Solid State Chem. 57, 362 (1985)

    Article  Google Scholar 

  70. 70.

    T.B. Massalski (ed.), Binary Alloy Phase Diagrams, vol. 1–3, 2nd edn. (ASM International, Materials Park, 1990)

  71. 71.

    W.A. Brainard, NASA Tech. Note D–5141, 1 (1968)

    Google Scholar 

  72. 72.

    O. Kubaschewski, C.B. Alcock, and P.J. Spencer, Materials Thermochemistry, 6th edn. (Pergamon, Oxford, 1993)

    Google Scholar 

  73. 73.

    F.R. De Boer, R. Boom, W.C.M. Mattens, M.R. Miedema, and A.K. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland Physics, Amsterdam, 1988)

    Google Scholar 

  74. 74.

    A.R. Miedema, P.F. de Châtel, and F.R. de Boer, Physica B 100, 1 (1980)

    Article  Google Scholar 

  75. 75.

    M.W. Chase, J. Phys. Chem. Ref. Data Monogr. 9, 1 (1998)

    Google Scholar 

  76. 76.

    R. Schmid-Fetzer, J. Electron Mater. 17, 193 (1988)

    Article  Google Scholar 

  77. 77.

    W.E. Liu and S.E. Mohney, Mater. Sci. Eng. B 103, 189 (2003)

    Article  Google Scholar 

  78. 78.

    V.G.H. Moh and G. Udubasa, Chem. Erde 35, 327 (1976)

    Google Scholar 

  79. 79.

    M. Venkatraman and H. Newmann, Binary Alloy Phase Diagrams, Chap. S-Sc (Sulfur-Scandium) (ASM International, Materials Park, 1990), p. 3276

    Google Scholar 

  80. 80.

    L. Brewer and R.H. Lamoreaux, Binary Alloy Phase Diagrams, Chap. Mo-Sc (Molybdenum-Scandium) (ASM International, Materials Park, 1990), pp. 2660–2663

    Google Scholar 

  81. 81.

    L. Brewer and R.H. Lamoreaux, Binary Alloy Phase Diagrams, Chap. Mo-Y (Molybdenum-Yttrium) (ASM International, Materials Park, 1990), pp. 2686–2687

    Google Scholar 

  82. 82.

    M. Venkatraman and H. Newmann, Binary Alloy Phase Diagrams, Chap. S-Y (Sulfur-Yttrium) (ASM International, Materials Park, 1990), p. 3295

    Google Scholar 

  83. 83.

    G. Lütjering and J.C. Williams, Titanium, Chapter Fundamental Aspects (New York, 2007), pp. 15–52

  84. 84.

    I.T. McGovern, E. Dietz, H.H. Rotermund, A.M. Bradshaw, W. Braun, W. Radlik, and J.F. McGilp, Surf. Sci. 152–153, 1203 (1985)

    Article  Google Scholar 

  85. 85.

    H. Okamoto, J. Phase Equilib. 24, 279 (2003)

    Article  Google Scholar 

  86. 86.

    H. Okamoto, Binary Alloy Phase Diagrams, Chap. S-Zr (Sulfur-Zirconium) (ASM International, Materials Park, 1990), pp. 3300–3301

    Google Scholar 

  87. 87.

    F.J. Mompean, J. Perrone, and M. Illemassène, Chemical Thermodynamics of Zirconium, vol. 8 (OECD Nuclear Energy Agency, Amsterdam, 2005)

    Google Scholar 

  88. 88.

    T.B. Massalski, Binary Alloy Phase Diagrams, Chap. Hf-S (Hafnium-Sulfur) (ASM International, Materials Park, 1990), p. 2108

    Google Scholar 

  89. 89.

    L. Brewer and L.H. Lamoreaux, Binary Alloy Phase Diagrams, Chap. Hf-Mo (Hafnium-Molybdenum) (ASM International, Materials Park, 1990), pp. 2088–2089

    Google Scholar 

  90. 90.

    S. Fiechter and K. Eckert, J. Cryst. Growth 88, 435 (1988)

    Article  Google Scholar 

  91. 91.

    C. Mujica, J. Llanos, and O. Wittke, J. Alloys Compd. 226, 136 (1995)

    Article  Google Scholar 

  92. 92.

    A.V. Powell, A. McDowall, P. Vaqueiro, R.I. Smith, T. Ohtani, and Y. Okuya, J. Mater. Chem. 14, 3051 (2004)

    Article  Google Scholar 

  93. 93.

    W. Xiong, Y. Du, Y. Liu, B.Y. Huang, H.H. Xu, H.L. Chen, and Z. Pan, CALPHAD 28, 133 (2004)

    Article  Google Scholar 

  94. 94.

    T.B. Massalski, Binary Alloy Phase Diagrams, Chap. Nb-S (Niobium-Sulfur) (ASM International, Materials Park, 1990), pp. 2758–2762

    Google Scholar 

  95. 95.

    V. Raghavan, J. Phase Equilib. Diff. 27, 298 (2006)

    Article  Google Scholar 

  96. 96.

    P. Remmert, E. Fischer, and H.U. Hummel, Z. Naturforsch. B 49b, 1175 (1994)

    Google Scholar 

  97. 97.

    S.R. Shatynski, Oxid. Met. 11, 307 (1977)

    Article  Google Scholar 

  98. 98.

    P.E.A. Turchi, L. Kaufman, and Z.K. Liu, CALPHAD 30, 70 (2006)

    Article  Google Scholar 

  99. 99.

    M. Venkatraman and H. Newmann, Binary Alloy Phase Diagrams, Chap. Cr-S (Chromium-Sulfur) (ASM International, Materials Park, 1990), pp. 1322–1326

    Google Scholar 

  100. 100.

    T.D. Durbin, J.R. Lince, and J.A. Yarmoff, J. Vac. Sci. Technol. A 10, 2529 (1992)

    Article  Google Scholar 

  101. 101.

    T.D. Durbin, J.R. Lince, S.V. Didziulis, D.K. Shuh, and J.A. Yarmoff, Surf. Sci. 302, 314 (1994)

    Article  Google Scholar 

  102. 102.

    A. Kumar and P.K. Ahluwalia, Eur. Phys. J. B 85, 186 (2012)

    Article  Google Scholar 

  103. 103.

    L. Brewer and R.H. Lamoreaux, Binary Alloy Phase Diagrams, Chap. Mn-Mo (Manganese-Molybdenum) (ASM International, Materials Park, 1990), pp. 2573–2575

    Google Scholar 

  104. 104.

    H.F. Franzen, Binary Alloy Phase Diagrams, Chap. Mn-S (Manganese-Sulfur) (ASM International, Materials Park, 1990)

    Google Scholar 

  105. 105.

    D. Dilner, H. Mao, and M. Selleby, CALPHAD 48, 95 (2015)

    Article  Google Scholar 

  106. 106.

    J.R. Lince, T.B. Stewart, P.D. Fleischauer, J.A. Yarmoff, and A. Taleb-Ibrahimi, J. Vac. Sci. Technol. A 7, 2469 (1989)

    Article  Google Scholar 

  107. 107.

    L. Brewer and R. Lamoreaux, Binary Alloy Phase Diagrams, Chap. Mo-Tc (Molybdenum-Technetium) (ASM International, Materials Park, 1990)

    Google Scholar 

  108. 108.

    H. Okamoto, Binary Alloy Phase Diagrams, Chap. S-Tc (Sulfur-Technetium) (ASM International, Materials Park, 1990), p. 3284

    Google Scholar 

  109. 109.

    P. Mao, K. Han, and Y. Xin, J. Alloys Compd. 464, 190 (2008)

    Article  Google Scholar 

  110. 110.

    K.K. Tiong, T.S. Shou, and C.H. Ho, J. Phys. Condens. Matter 12, 3441 (2000)

    Article  Google Scholar 

  111. 111.

    T.P. da Silva, M.O. Figueiredo, D. de Oliveira, J.P. Veiga, and M.J. Batista, J. Miner. Mater. Charact. Eng. 1, 207 (2013)

    Google Scholar 

  112. 112.

    K.K. Tiong, P.C. Liao, C.H. Ho, and Y.S. Huang, J. Cryst. Growth 205, 543 (1999)

    Article  Google Scholar 

  113. 113.

    V. Raghavan, Phase Diagrams of Ternary Iron Alloys, Chap. The Fe-Mo-S (Iron-Molybdenum-Sulphur) System (Calcutta, 1988), pp. 174–187

  114. 114.

    P.C. d’A Meneau and B. Boucher, Acta Crystallogr. B 33, 1495 (1977)

    Article  Google Scholar 

  115. 115.

    M. Kamaratos and C.A. Papageorgopoulos, Surf. Sci. 160, 451 (1985)

    Article  Google Scholar 

  116. 116.

    J.S. Zabinski, T. George, and B.J. Tatarchuk, Thin Solid Films 181, 485 (1989)

    Article  Google Scholar 

  117. 117.

    J.R. Lince, T.B. Stewart, M.M. Hills, P.D. Fleischauer, J.A. Yarmoff, and A. Taleb-Ibrahimi, Surf. Sci. 223, 65 (1989)

    Article  Google Scholar 

  118. 118.

    P. Waldner and A.D. Pelton, J. Phase Equilib. Diff. 26, 23 (2005)

    Article  Google Scholar 

  119. 119.

    H. Okamoto, J. Phase Equilib. 21, 572 (2000)

    Article  Google Scholar 

  120. 120.

    H. Okamoto, J. Phase Equilib. 12, 620 (1991)

    Article  Google Scholar 

  121. 121.

    H. Okamoto, J. Phase Equilib. 15, 455 (1994)

    Article  Google Scholar 

  122. 122.

    A. Taylor and N.J. Doyle, J. Less Common Met. 9, 190 (1965)

    Article  Google Scholar 

  123. 123.

    V.G. Kuznetsov, M.A. Sokolova, K.K. Palkina, and Z.V. Popova, Inorg. Mater. 1, 617 (1965)

    Google Scholar 

  124. 124.

    K.P. Gupta, J. Phase Equilib. Diff. 25, 292 (2004)

    Article  Google Scholar 

  125. 125.

    J. Houserová, J. Vřešťál, and M. šob, CALPHAD 29, 133 (2005)

    Article  Google Scholar 

  126. 126.

    V.L. Kalikhman, E.P. Gladchenko, A.G. Duksina, and A.G. Krupina, Powder Metall. Met. Ceram. 10, 475 (1969)

    Google Scholar 

  127. 127.

    A. Mascaraque, L.M. de la Garza, and E.G. Michel, Surf. Sci. 482–485, 664 (2001)

    Article  Google Scholar 

  128. 128.

    J. Bulicz, L.M. de la Garza, and S. Fuentes, Surf. Sci. 365, 411 (1996)

    Article  Google Scholar 

  129. 129.

    J.R. Lince, D.J. Carre, and P.D. Fleischauer, Langmuir 2, 805 (1986)

    Article  Google Scholar 

  130. 130.

    H. Okamoto, J. Phase Equilib. 13, 108 (1992)

    Article  Google Scholar 

  131. 131.

    L. Kaufman, CALPHAD 14, 163 (1990)

    Article  Google Scholar 

  132. 132.

    O. Diéguez and N. Marzari, Phys. Rev. B 80, 214115 (2009)

    Article  Google Scholar 

  133. 133.

    E. Parthé, E. Hohnke, and F. Hulliger, Acta Crystallogr. 23, 832 (1967)

    Article  Google Scholar 

  134. 134.

    L. Brewer, L. Brewer, R.H. Lamoreaux, Binary Alloy Phase Diagrams, Chap. Ir-Mo (Iridium-Molybdenum) (ASM International, Materials Park, 1990), pp. 2328–2329

    Google Scholar 

  135. 135.

    S.H. Zhou, Y. Wang, C. Jiang, J.Z. Zhu, L.Q. Chen, and Z.K. Liu, Mater. Sci. Eng. A 397, 288 (2005)

    Article  Google Scholar 

  136. 136.

    P. Waldner and A.D. Pelton, Z. Metallkd. 95, 672 (2004)

    Article  Google Scholar 

  137. 137.

    W. Schramm, E. Gocke, and R. Schöllhorn, Mater. Res. Bull. 21, 929 (1986)

    Article  Google Scholar 

  138. 138.

    J.A. Rodriguez, Polyhedron 16, 3177 (1997)

    Article  Google Scholar 

  139. 139.

    C. Papageorgopoulos and M. Kamaratos, Surf. Sci. 164, 353 (1985)

    Article  Google Scholar 

  140. 140.

    A. Zubkov, T. Fujino, N. Sato, and K. Yamada, J. Chem. Thermodyn. 30, 571 (1998)

    Article  Google Scholar 

  141. 141.

    H. Okamoto, J. Phase Equilib. 13, 106 (1992)

    Article  Google Scholar 

  142. 142.

    G. Ghosh and G.B. Olson, J. Phase Equilib. 21, 32 (2000)

    Article  Google Scholar 

  143. 143.

    E. Perrot, A. Humbert, A. Piednoir, C. Chapon, and C.R. Henry, Surf. Sci. 445, 407 (2000)

    Article  Google Scholar 

  144. 144.

    L. Brewer and R.H. Lamoreaux, Binary Alloy Phase Diagrams, Chap. Mo-Pt (Molybdenum-Platinum) (ASM International, Materials Park, 1990), pp. 2650–2652

    Google Scholar 

  145. 145.

    H.F. Franzen, Binary Alloy Phase Diagrams, Chap. Pt-S (Platinum-Sulfur) (ASM International, Materials Park, 1990), pp. 3121–3125

    Google Scholar 

  146. 146.

    W.K. Hofmann, J. Mater. Sci. 23, 3981 (1988)

    Article  Google Scholar 

  147. 147.

    R.A. Simon, A.J. Ricco, D.J. Harrison, and M.S. Wrighton, J. Phys. Chem. 87, 4446 (1983)

    Article  Google Scholar 

  148. 148.

    D. Huang, L.L.Y. Chang, and C.R. Knowles, J. Less Common Met. 163, 281 (1990)

    Article  Google Scholar 

  149. 149.

    S. Yamamoto, K. Matsui, and M. Wakihara, Mater. Res. Bull. 18, 1311 (1983)

    Article  Google Scholar 

  150. 150.

    D.J. Chakrabarti, and D.E. Laughlin, Bull. Alloy Phase Diagr. 4, 254 (1983)

    Article  Google Scholar 

  151. 151.

    W.R. Cook Jr., (National Bureau of Standards (NBS) Special Publication, Gaithersburg, MD, 1972)

  152. 152.

    R.W. Potter, Econ. Geol. 72, 1524 (1977)

    Article  Google Scholar 

  153. 153.

    F. Grønvold, S. Stølen, E.F. Westrum Jr, and C.G. Galeas, J. Chem. Thermodyn. 19, 1305 (1987)

    Article  Google Scholar 

  154. 154.

    V.M. Glazov and A.S. Burkhanov, Izv. Akad. Nauk. SSSR 16, 565 (1980)

    Google Scholar 

  155. 155.

    M.R. Baren, Binary Alloy Phase Diagrams, Chap. Ag-Mo (Silver-Molybdenum) (ASM International, Materials Park, 1990), pp. 59–60

    Google Scholar 

  156. 156.

    A. Souder and D.E. Brodie, Can. J. Phys. 49, 2565 (1971)

    Article  Google Scholar 

  157. 157.

    S.Y. Li, J.A. Rodriguez, J. Hrbek, H.H. Huang, and G.Q. Xu, Surf. Sci. 395, 216 (1998)

    Article  Google Scholar 

  158. 158.

    T.B. Massalski, H. Okamoto, and L. Brewer, Binary Alloy Phase Diagrams, Chap. Au-Mo (Gold-Molybdenum) (ASM International, Materials Park, 1990), pp. 395–397

    Google Scholar 

  159. 159.

    H. Okamoto and T.B. Massalski, Binary Alloy Phase Diagrams, Chap. Au-S (Gold-Sulfur) (ASM International, Materials Park, 1990), pp. 422–424

    Google Scholar 

  160. 160.

    C. Maurel, F. Ajustron, R. Péchou, G. Seine, and R. Coratger, Surf. Sci. 600, 442 (2006)

    Article  Google Scholar 

  161. 161.

    H.L. Zhuang and R.G. Hennig, J. Phys. Chem. C 117, 20440 (2013)

    Article  Google Scholar 

  162. 162.

    J.A. Wilson and A.D. Yoffe, Adv. Phys. 18, 193 (1969)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. E. Mohney.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Domask, A.C., Gurunathan, R.L. & Mohney, S.E. Transition Metal–MoS2 Reactions: Review and Thermodynamic Predictions. Journal of Elec Materi 44, 4065–4079 (2015). https://doi.org/10.1007/s11664-015-3956-5

Download citation

Keywords

  • Molybdenum disulfide
  • two-dimensional material
  • van der Waals solid
  • dichalcogenide
  • phase equilibria
  • contact