Skip to main content
Log in

Microwave Dielectric Properties of Temperature-Stable BaLn2(MoO4)4–TiO2 (Ln = Ce, Nd, and Sm) Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of temperature-stable microwave dielectric ceramics (1 − x)Ba Ln2(MoO4)4xTiO2 (Ln = Ce, Nd, and Sm; 0.4 ≤ x ≤0.55) were prepared by solid-state reaction. Sintering behavior, phase composition, microstructure, and microwave dielectric properties were investigated. X-ray powder diffraction and scanning electron microscopy revealed that the main phases of the BaLn2(MoO4)4–TiO2 ceramics were the monoclinic BaLn2(MoO4)4 phase and the rutile TiO2 phase. Study of the materials’ microwave dielectric properties revealed that the permittivity (ε r) and the temperature coefficient of the resonant frequency (τ f) increased gradually with increasing x value whereas quality factors (Q × f) decreased. For BaLn2(MoO4)4–TiO2 (Ln = Ce and Nd), τ f values could be adjusted to near zero, relative permittivity (ε r) was 13.2–14.3, and Q × f values were between 11,950 and 45,720 GHz (at 9.11–9.83 GHz) when x = 0.45 to 0.55. For BaSm2(MoO4)4–TiO2, excellent microwave dielectric properties were obtained when x = 0.4 to 0.5, τ f values could be adjusted to near zero, ε r was 13.1–13.9, and Q × f values were between 25,520 and 63,130 GHz (at 9.31–10.11 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Sebastian and H. Jantunen, Int. Mater. Rev. 53, 57 (2008).

    Article  Google Scholar 

  2. A.K. Axelsson and N.M. Alford, J. Eur. Ceram. Soc. 26, 1933 (2006).

    Article  Google Scholar 

  3. Y. Wu, D. Zhou, J. Guo, and L.X. Pang, J. Mater. Sci. Mater. Electr. 24, 1505 (2013).

    Article  Google Scholar 

  4. C.L. Huang, W.R. Yang, and P.C. Yu, J. Eur. Ceram. Soc. 34, 277 (2014).

    Article  Google Scholar 

  5. D. Thomas, P. Abhilash, and M.T. Sebastian, J. Eur. Ceram. Soc. 33, 87 (2013).

    Article  Google Scholar 

  6. O.A. Shlyakhtin and Y.J. Oh, J. Am. Ceram. Soc. 89, 3366 (2006).

    Article  Google Scholar 

  7. D. Zhou, H. Wang, L.X. Pang, C.A. Randall, and X. Yao, J. Am. Ceram. Soc. 92, 2242 (2009).

    Article  Google Scholar 

  8. L.X. Pang, D. Zhou, and W.G. Liu, J. Am. Ceram. Soc. 97, 2032 (2014).

    Article  Google Scholar 

  9. G.K. Choi, S.Y. Cho, J.S. An, and K.S. Hong, J. Eur. Ceram. Soc. 26, 2011 (2006).

    Article  Google Scholar 

  10. G.K. Choi, J.R. Kim, S.H. Yoon, and K.S. Hong, J. Eur. Ceram. Soc. 27, 3063 (2007).

    Article  Google Scholar 

  11. L.X. Pang, G.B. Sun, and D. Zhou, Mater. Lett. 65, 164 (2011).

    Article  Google Scholar 

  12. C. Cascales, A.M. Blas, M. Rico, V. Volkov, and C. Zaldo, Opt. Mater. 27, 1672 (2005).

    Article  Google Scholar 

  13. L. Qin, Y.L. Huang, T. Tsuboi, and H.J. Seo, Mater. Res. Bull. 47, 4498 (2012).

    Article  Google Scholar 

  14. C.F. Guo, H.K. Yang, and J.H. Jeong, J. Lumin. 130, 1390 (2010).

    Article  Google Scholar 

  15. Y.H. Zheng, X.X. Lin, Q.M. Wang, W.S. Cai, and C.C. Zhang, Mater. Res. Bull. 47, 856 (2012).

    Article  Google Scholar 

  16. S.J. Han, J.Y. Wang, J. Li, Y.J. Guo, Y.Z. Wang, and L.L. Zhao, J. Lumin. 131, 244 (2011).

    Article  Google Scholar 

  17. N.K. James and R. Ratheesh, J. Am. Ceram. Soc. 93, 931 (2010).

    Article  Google Scholar 

  18. A. Surjith and R. Ratheesh, J. Alloy. Compd. 550, 169 (2013).

    Article  Google Scholar 

  19. D. Zhou, L.X. Pang, J. Guo, Y. Wu, G.Q. Zhang, W. Dai, H. Wang, and X. Yao, J. Am. Ceram. Soc. 94, 2800 (2011).

    Article  Google Scholar 

  20. L.X. Pang, H. Liu, D. Zhou, G.B. Sun, W.G. Qin, and W.G. Liu, Mater. Lett. 72, 128 (2012).

    Article  Google Scholar 

  21. K. Fukuda, R. Kitoh, and I. Awai, Jpn. J. Appl. Phys. 32, 4584 (1993).

    Article  Google Scholar 

  22. J. Guo, D. Zhou, L. Wang, H. Wang, T. Shao, Z.M. Qi, and X. Yao, Dalton Trans. 42, 1483 (2013).

    Article  Google Scholar 

  23. A.N. Norris, P. Sheng, and A.J. Callegari, J. Appl. Phys. 57, 1990 (1985).

    Article  Google Scholar 

  24. P.N. Sen, C. Scala, and M.H. Cohen, Geophysics 46, 781 (1981).

    Article  Google Scholar 

  25. F. Brouers, J. Phys. C: Solid State Phys. 19, 7183 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51202182), the Fundamental Research Funds for the Central University, the international cooperation project of Shaanxi Province (2013KW12–04), and the 111 Project of China (B14040). SEM work was performed at the International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China, and the authors thank Ms Yan-Zhu Dai for her help with SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WB., Xi, HH. & Zhou, D. Microwave Dielectric Properties of Temperature-Stable BaLn2(MoO4)4–TiO2 (Ln = Ce, Nd, and Sm) Ceramics. J. Electron. Mater. 44, 4250–4254 (2015). https://doi.org/10.1007/s11664-015-3946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3946-7

Keywords

Navigation