Skip to main content
Log in

Experimental and Theoretical Study of the Mechanoluminescence of ZnS:Mn Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the synthesis and mechanoluminescence (ML) of manganese-doped zinc sulfide (ZnS) nanoparticles. Clusters of ZnS:Mn nanocrystals were prepared by chemical precipitation, by mixing of solutions of zinc chloride, sodium sulfide, and manganese chloride. Mercaptoethanol (ME) was used as capping agent, to modify the surface of the nanoparticles and prevent their growth. The particle size of the nanocrystals, measured by use of x-ray diffraction and transmission electron microscopy, was in the range 2–5 nm. The ZnS:Mn nanoparticles were deformed impulsively by dropping a load from a fixed height. The ML intensity of ZnS:Mn nanocrystals increased with increasing mechanical stress i.e. with increasing impact velocity. The impact velocity-dependence of maximum ML intensity, I m, and total ML intensity, I T, are discussed. The effect of crystal size on the ML intensity–time curve is also discussed. ML intensity initially increases with increasing concentration of Mn in the samples, reaches an optimum value at a specific concentration of Mn, then decreases with further increasing concentration of Mn in the nanocrystals. The theory of the ML of nanoparticles is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, N. Herron, and T. Bein, Solid State Community 77, 33 (1991).

    Article  Google Scholar 

  2. R.N. Bhargava and D. Gallagher, Phys. Rev. B 50, 7602 (1994).

    Article  Google Scholar 

  3. X. Ma, J. Song, and Z. Yu, Thin Solid Films 519, 5043 (2011).

    Article  Google Scholar 

  4. N. Belman, S. Acharya, O. Konovalov, A. Varobiew, J. Israelachvili, S. Efrima, and Y. Golan, Nano Lett. 8, 3858 (2008).

    Article  Google Scholar 

  5. F. Piret, C. Bouvy, and B.L. Su, J. Mater. Chem. 19, 5964 (2009).

    Article  Google Scholar 

  6. X.J. Zhang, Nanotechnology 19, 305 (2008).

    Google Scholar 

  7. A.J. Walton, Adv. Phys. 26, 887 (1977).

    Article  Google Scholar 

  8. A.Y. Osipyan, V.F. Petrenko, A.V. Zaretskil, and R.W. Whitworth, Adv. Phys. 35, 115 (1986).

    Article  Google Scholar 

  9. M.I. Molotskill, Sov. Sci. B Rev. Chem. 13, 1 (1989).

    Google Scholar 

  10. J.S. Kim, K. Kibble, Y.N. Kwon, and K.S. Sohn, Opt. Lett. 34, 1915 (2009).

    Article  Google Scholar 

  11. C.N. Xu, T. Watanabe, M. Akiyama, and X.G. Zheng, Appl. Phys. Lett. 74, 1236 (1999).

    Article  Google Scholar 

  12. I. Sage and G. Bourhill, J. Mater. Chem. 11, 231 (2001).

    Article  Google Scholar 

  13. C.N. Xu, T. Watanabe, M. Akiyama, and X.G. Zheng, Mater. Res. Bull. 34, 1491 (1999).

    Article  Google Scholar 

  14. C.N. Xu, X.G. Zheng, T. Watanabe, M. Akiyama, and I. Usui, Thin Solid Films 352, 273 (1999).

    Article  Google Scholar 

  15. B.P. Chandra, Open Nanosci. J. 5, 45 (2011).

    Article  Google Scholar 

  16. B.O. Agyeman, C.N. Xu, W. Shi, M. Suzuki, and X.G. Zheng, Jpn. J. Appl. Phys. 41, 5259 (2002).

    Article  Google Scholar 

  17. C.N. Xu, AIST Today 2, 13 (2002).

    Google Scholar 

  18. C.N. Xu, X.G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, Appl. Phys. Lett. 76, 179 (2000).

    Article  Google Scholar 

  19. A.A. Khosravi, M. Kundu, G.S. Shekhawat, R.R. Gupta, A.K. Sharma, P.D. Vyas, and S.K. Kulkarni, Appl. Phys. Lett. 67, 2506 (1995).

    Article  Google Scholar 

  20. S. Mahamuni, A.A. Khosravi, M. Kunda, A. Kshirsagar, A. Bedekar, D.B. Avasare, P. Singh, and S.K. Kulkarni, J. Appl. Phys. 73, 52372 (1993).

    Article  Google Scholar 

  21. R. Sharma, D.P. Bisen, S.J. Dhoble, N. Brahme, and B.P. Chandra, J. Lumin. 131, 2089 (2011).

    Article  Google Scholar 

  22. R. Sharma, D.P. Bisen, U. Shukla, and B.G. Sharma, Recent Res. Sci. Technol. 4, 77 (2012).

    Google Scholar 

  23. B.P. Chandra, S.K. Mahobia, P. Jha, R.K. Kuraria, S.R. Kuraria, R.N. Baghel, and S. Thaker, J. Lumin. 128, 2038 (2008).

    Article  Google Scholar 

  24. M.B. Hocking, D.M. Preston, and J.I. Zink, J. Phys. Chem. 86, 4138 (1982).

    Article  Google Scholar 

  25. R. Sharma, D.P. Bisen, N. Brahme, and B.P. Chandra, Digest J. Nanomater. Biostruct. 6, 499 (2011).

    Google Scholar 

  26. C.N. Xu, C. Li, Y. Imai, H. Yamada, Y. Adachi, and K. Nishikubo, Adv. Sci. Technol. 45, 939 (2006).

    Article  Google Scholar 

  27. B.P. Chandra, C.N. Xu, H. Yamada, and X.G. Zheng, J. Lumin. 130, 442 (2010).

    Article  Google Scholar 

  28. Ross S. Fontenot, William A. Hollerman, and Shawn M. Goedeke, Mater. Lett. 65, 1108 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., BiSen, D.P. & Chandra, B.P. Experimental and Theoretical Study of the Mechanoluminescence of ZnS:Mn Nanoparticles. J. Electron. Mater. 44, 3312–3321 (2015). https://doi.org/10.1007/s11664-015-3911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3911-5

Keywords

Navigation