Skip to main content
Log in

Characterization of Cross-Sectioned Gallium Nitride High-Electron-Mobility Transistors with In Situ Biasing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

AlGaN/GaN high-electron-mobility transistors (HEMTs) were characterized in cross-section by Kelvin probe force microscopy (KPFM) during in situ biasing. The HEMTs used in this study were specially designed to maintain full and representative transistor functionality after cross-sectioning perpendicular to the gate width dimension to expose the active channel from source to drain. A cross-sectioning procedure was established that produces samples with high-quality surfaces and minimal degradation in initial transistor performance. A detailed description of the cross-sectioning procedure is provided. Samples were characterized by KPFM, effectively mapping the surface potential of the device in two-dimensional cross-section, including under metallization layers (i.e., gate, field plates, and ohmic contacts). Under the gate and field plate layers are where electric field, temperature, and temperature gradients are all most commonly predicted to have peak values, and where degradation and failure are most likely, and so this is where direct measurements are most critical. In this work, the surface potential of the operating device was mapped in cross-section by KPFM. Charge redistribution was observed during and after biasing, and the surface potential was seen to decay with time back to the prebias condition. This work is a first step toward directly mapping and localizing the steady-state and transient charge distribution due to point defects (traps) before, during, and after device operation, including normally inaccessible regions such as under metallization layers. Such measurements have not previously been demonstrated for GaN HEMT technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Makaram, J. Joh, J.A. del Alamo, T. Palacios, and C.V. Thompson, Appl. Phys. Lett. 96, 233509 (2010).

    Article  Google Scholar 

  2. L. Li, J. Joh, J.A. del Alamo, and C.V. Thompson, Appl. Phys. Lett. 100, 172109 (2012).

    Article  Google Scholar 

  3. S.Y. Park, C. Floresca, U. Chowdhury, J.L. Jimenez, C. Lee, E. Beam, P. Saunier, T. Balistreri, and M.J. Kim, Microelectron. Reliab. 49, 478 (2009).

    Article  Google Scholar 

  4. U. Chowdhury, J.L. Jimenez, C. Lee, E. Beam, P. Saunier, T. Balistreri, S.Y. Park, T. Lee, J. Wang, M.J. Kim, J. Joh, and J.A. del Alamo, IEEE Electron Device Lett. 29, 1098 (2008).

    Article  Google Scholar 

  5. T. Ohki, T. Kikkawa, Y. Inoue, M. Kanamura, N. Okamoto, K. Makiyama, K. Imanishi, H. Shigematsu, K. Joshin, and N. Hara, in IEEE CFP09RPS-CDR 47th Annual International Reliability Physics Symposium, Montreal, 2009.

  6. S. Salemi and A. Christou, in CS MANTECH Conference, Palm Springs, 16–19 May 2011.

  7. J. Ao, Y. Yamaoka, M. Okada, C.Y. Hu, and Y. Ohno, IEICE Trans. Electron. E91-C, 1004 2008.

  8. M. Kuball, M. Tapanja, R.J.T. Simms, M. Faqir, and U.K. Mishra, Microelectron. Reliab. 51, 195 (2011).

    Article  Google Scholar 

  9. E.R. Heller, R. Ventury, and D.S. Green, IEEE Trans. Electron Devices 58, 1091 (2011).

    Article  Google Scholar 

  10. J. Summer, R.A. Oliver, M.J. Kappers, and C.J. Humphreys, J. Vac. Sci. Technol. B 26, 611 (2008).

    Article  Google Scholar 

  11. C.Y. Nakamura, D.L. Hetherington, M.R. Shaneyfelt, P.J. Shea, and A.N. Erickson, Appl. Phys. Lett. 75, 2319 (1999).

    Article  Google Scholar 

  12. J. Summer, R.A. Oliver, M.J. Kappers, and C.J. Humphreys, J. Appl. Phys. 106, 104503 (2009).

    Article  Google Scholar 

  13. C.-H. Lin, T.A. Merz, D.R. Doutt, J. Joh, J.A. del Alamo, U.K. Mishra, and L.J. Brillson, IEEE Trans. Electron Devices 59, 2667 (2012).

    Article  Google Scholar 

  14. A.K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffman, P. Kaszuba, and C. Daghlian, J. Appl. Phys. 77, 1888 (1995).

    Article  Google Scholar 

  15. A.R. Arehart, A. Sasikumar, S. Rajan, G.D. Via, B. Poling, B. Winningham, E.R. Heller, D. Brown, Y. Pei, F. Recht, U.K. Mishra, and S.A. Ringel, Solid State Electron. 80, 19 (2013).

    Article  Google Scholar 

  16. D.W. Cardwell, A. Sasakumar, A.R. Areheart, S.W. Kaun, J. Lu, S. Keller, J.S. Speck, U.K. Mishra, S.A. Ringel, and J.P. Pelz, Appl. Phys. Lett. 102, 193509 (2013).

    Article  Google Scholar 

  17. A. Lochthofen, W. Mertin, G. Bacher, M. Furitsch, G. Bruderl, U. Strauss, and V. Harle, J. Phys. D 41, 135115 (2008).

    Article  Google Scholar 

  18. G. Neubauer, A. Erickson, C.C. Williams, J.J. Kopanski, M. Rogers, and D. Adderton, J. Vac. Sci. Technol. B 14, 426 (1996).

    Article  Google Scholar 

  19. M.I.N. da Silva, J.C. Gonzalez, and P.E. Russell, Microelectron. J. 34, 571 (2003).

    Article  Google Scholar 

  20. S. Kamiya, M. Iwami, T. Tsuchiya, M. Kurouchi, and J. Kikawa, Appl. Phys. Lett. 90, 213511 (2007).

    Article  Google Scholar 

  21. W. Li and D.Y. Li, Chem. Phys. 122, 064708 (2005).

    Google Scholar 

  22. S. Magonov and J. Alexander, Beilstein J. Nanotechnol. 2, 15–27 (2011).

    Article  Google Scholar 

  23. J.P. Jones, M.R. Rosenberger, W.P. King, R. Vetury, E.R. Heller, D. Dorsey, and S. Graham, in IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Atlanta, 2014.

  24. D.W. Cardwell, A.R. Arehart, C. Poblenz, Y. Pei, J.S. Speck, U.K. Mishra, S.A. Ringel, and J.P. Pelz, Appl. Phys. Lett. 100, 193507 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.M. Hilton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilton, A., Brown, J., Moore, E. et al. Characterization of Cross-Sectioned Gallium Nitride High-Electron-Mobility Transistors with In Situ Biasing. J. Electron. Mater. 44, 3259–3264 (2015). https://doi.org/10.1007/s11664-015-3908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3908-0

Keywords

Navigation