Skip to main content
Log in

Improved Device Performance of Polymer-CuInS2/TiO2 Solar Cells Based on Treated CuInS2 Quantum Dots

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper describes a solvothermal approach to remove the organic amine ligand on the surface of CuInS2 quantum dots (QDs) and demonstrates improved device performance of ternary polymer-CuInS2/TiO2 solar cells. Surface treatment of the CuInS2 QDs was carried out using different treatment methods, agents, and reaction times. Results showed that most of the amine ligands could be removed using hexanoic acid as the treatment agent by the solvothermal method in 16 h; the treated CuInS2 QDs displayed an aggregation tendency and quenched the fluorescence of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV) more effectively. As a result, MEH-PPV-CuInS2/TiO2 solar cells based on the treated CuInS2 QDs showed much higher device performance than those containing pristine CuInS2 QDs, achieving efficiency of 2.02% under AM1.5 illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Swanson, Science 324, 891 (2009).

    Article  Google Scholar 

  2. B.R. Saunders and M.L. Turner, Adv. Colloid Interface Sci. 138, 1 (2008).

    Article  Google Scholar 

  3. H.W. Hillhouse and M.C. Beard, Curr. Opin. Colloid Interface Sci. 14, 245 (2009).

    Article  Google Scholar 

  4. M. Skompska, Synth. Met. 160, 1 (2010).

    Article  Google Scholar 

  5. S. Ebrahim, M. Soliman, and T.M. Abdel-Fattah, J. Electron. Mater. 40, 2033 (2011).

    Article  Google Scholar 

  6. X.C.C. Burda, R. Narayanan, and M.A. El-Sayed, Chem. Rev. 105, 1025 (2005).

    Article  Google Scholar 

  7. Y.W. Jun, J.S. Choi, and J. Cheon, Angew. Chem. Int. Ed. 45, 3414 (2006).

    Article  Google Scholar 

  8. K.M. Coakley and M.D. McGehee, Chem. Mater. 16, 4533 (2004).

    Article  Google Scholar 

  9. Y. Zhou, M. Eck, and M. Krüger, Energy Environ. Sci. 3, 1851 (2010).

    Article  Google Scholar 

  10. T. Xu and Q. Qiao, Energy Environ. Sci. 4, 2700 (2011).

    Article  Google Scholar 

  11. A.J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, J. Mater. Chem. 22, 2351 (2012).

    Article  Google Scholar 

  12. J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, and L. Schmidt-Mende, Adv. Mater. 23, 1810 (2011).

    Article  Google Scholar 

  13. Q. Wei, K. Hirota, K. Tajima, and K. Hashimoto, Chem. Mater. 18, 5080 (2006).

    Article  Google Scholar 

  14. C.Y. Kuo, W.C. Tang, C. Gau, T.F. Guo, and D.Z. Jeng, Appl. Phys. Lett. 93, 033307 (2008).

    Article  Google Scholar 

  15. S.S. Williams, M.J. Hampton, V. Gowrishankar, I.-K. Ding, J.L. Templeton, E.T. Samulski, J.M. DeSimone, and M.D. McGehee, Chem. Mater. 20, 5229 (2008).

    Article  Google Scholar 

  16. C. Winder and N.S. Sariciftci, J. Mater. Chem. 14, 1077 (2004).

    Article  Google Scholar 

  17. E. Bundgaard and F. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007).

    Article  Google Scholar 

  18. Y. Li, Acc. Chem. Res. 45, 723 (2012).

    Article  Google Scholar 

  19. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).

    Article  Google Scholar 

  20. D. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok, and M. Gerhold, Appl. Phys. Lett. 88, 183111 (2006).

    Article  Google Scholar 

  21. S. Günes, K.P. Fritz, H. Neugebauer, N.S. Sariciftci, S. Kumar, and G.D. Scholes, Sol. Energy Mater. Sol. Cells 91, 420 (2007).

    Article  Google Scholar 

  22. D. Verma and A. Ranga, Sol. Energy Mater. Sol. Cells 93, 1482 (2009).

    Article  Google Scholar 

  23. N.K.S. Dayal, D.C. Olson, D.S. Ginley, and G. Rumbles, Nano Lett. 10, 239 (2010).

    Article  Google Scholar 

  24. J.N. de Freitas, I.R. Grova, L.C. Akcelrud, E. Arici, N.S. Sariciftci, and A.F. Nogueira, J. Mater. Chem. 20, 4845 (2010).

    Article  Google Scholar 

  25. T. Ni, J. Yan, Y. Jiang, F. Zou, L. Zhang, D. Yang, J. Wei, S. Yang, and B. Zou, J. Mater. Sci. 49, 2571 (2013).

    Article  Google Scholar 

  26. M. Nam, S. Lee, J. Park, S.-W. Kim, and K.-K. Lee, Jpn. J. Appl. Phys. 50, 06GF02 (2011).

    Article  Google Scholar 

  27. H.J. Lewerenz, Sol. Energy Mater. Sol. Cells 83, 395 (2004).

    Article  Google Scholar 

  28. R. Klenk, J. Klaer, R. Scheer, M.C. Lux-Steiner, I. Luck, N. Meyer, and U. Rühle, Thin Solid Films 480–481, 509 (2005).

    Article  Google Scholar 

  29. I. Konovalov, Thin Solid Films 451–452, 413 (2004).

    Article  Google Scholar 

  30. M. Sabet, M. Salavati-Niasari, D. Ghanbari, O. Amiri, and M. Yousefi, Mater. Sci. Semicond. Process. 16, 696 (2013).

    Article  Google Scholar 

  31. O. Amiri, M. Salavati-Niasari, M. Sabet, and D. Ghanbari, Mater. Sci. Semicond. Process. 16, 1485 (2013).

    Article  Google Scholar 

  32. E. Arici, N.S. Sariciftci, and D. Meissner, Adv. Funct. Mater. 13, 165 (2003).

    Article  Google Scholar 

  33. M. Piver, T. Rath, T. Grieβer, G. Trimmel, F. Stelzer, and D. Meissner, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol. 1 (2006, p. 247).

  34. W. Yue, F. Wu, C. Liu, Z. Qiu, Q. Cui, H. Zhang, F. Gao, W. Shen, Q. Qiao, and M. Wang, Sol. Energy Mater. Sol. Cells 114, 43 (2013).

    Article  Google Scholar 

  35. W. Yue, G. Zhang, S. Wang, W. Sun, M. Lan, and G. Nie, Mater. Sci. Semicond. Process. 25, 337 (2014).

    Article  Google Scholar 

  36. W. Yue, M. Wang, and G. Nie, Sol. Energy 99, 126 (2014).

    Article  Google Scholar 

  37. N.C. Greenham, X. Peng, and A.P. Alivisatos, Phys. Rev. B 54, 17628 (1996).

    Article  Google Scholar 

  38. S. Dayal, N. Kopidakis, D.C. Olson, D.S. Ginley, and G. Rumbles, Nano Lett. 10, 239 (2010).

    Article  Google Scholar 

  39. L. Han, D. Qin, X. Jiang, Y. Liu, L. Wang, J. Chen, and Y. Cao, Nanotechnology 17, 4736 (2006).

    Article  Google Scholar 

  40. W. Yue, M. Lan, G. Zhang, W. Sun, S. Wang, and G. Nie, Mater. Sci. Semicond. Process. 24, 117 (2014).

    Article  Google Scholar 

  41. X. Ren, Q. Li, Y. Xue, X. Zhai, and M. Yu, J. Colloid Interface Sci. 389, 53 (2013).

    Article  Google Scholar 

  42. D.D. Purkayastha, B. Sarma, and C.R. Bhattacharjee, J. Lumin. 154, 36 (2014).

    Article  Google Scholar 

  43. Y. Zhou, F.S. Riehle, Y. Yuan, H.-F. Schleiermacher, M. Niggemann, G.A. Urban, and M. Krüger, Appl. Phys. Lett. 96, 013304 (2010).

    Article  Google Scholar 

  44. Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, and H.W. Hillhouse, Nano Lett. 8, 2982 (2008).

    Article  Google Scholar 

  45. J. Bouclé, P. Ravirajan, and J. Nelson, J. Mater. Chem. 17, 3141 (2007).

    Article  Google Scholar 

  46. B.C. Thompson and J.M. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008).

    Article  Google Scholar 

  47. R. Traiphol, N. Charoenthai, T. Srikhirin, T. Kerdcharoen, T. Osotchan, and T. Maturos, Polymer 48, 813 (2007).

    Article  Google Scholar 

  48. I. Samuel, G. Rumbles, C. Collison, R. Friend, S. Moratti, and A. Holmes, Synth. Met. 84, 497 (1997).

    Article  Google Scholar 

  49. W.J.E. Beek, M.M. Wienk, and R.A.J. Janssen, Adv. Funct. Mater. 16, 1112 (2006).

    Article  Google Scholar 

  50. Y.-Y. Lin, T.-H. Chu, C.-W. Chen, and W.-F. Su, Appl. Phys. Lett. 92, 053312 (2008).

    Article  Google Scholar 

  51. Y.Y. Lin, T.H. Chu, S.S. Li, C.H. Chuang, C.H. Chang, W.F. Su, C.P. Chang, M.W. Chu, and C.W. Chen, J. Am. Chem. Soc. 131, 3644 (2009).

    Article  Google Scholar 

  52. B.J. Schwartz, Annu. Rev. Phys. Chem. 54, 141 (2003).

    Article  Google Scholar 

  53. J.H. Warner, A.R. Watt, E. Thomsen, N. Heckenberg, P. Meredith, and H. Rubinsztein-Dunlop, J. Phys. Chem. B 109, 9001 (2005).

    Article  Google Scholar 

  54. A. Moliton and J.-M. Nunzi, Polym. Int. 55, 583 (2006).

    Article  Google Scholar 

  55. W.J. Potscavage Jr., A. Sharma, and B. Kippelen, Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc. Chem. Res. 42, 1758 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjin Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, W., Xie, Z., Pan, Y. et al. Improved Device Performance of Polymer-CuInS2/TiO2 Solar Cells Based on Treated CuInS2 Quantum Dots. J. Electron. Mater. 44, 3294–3301 (2015). https://doi.org/10.1007/s11664-015-3903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3903-5

Keywords

Navigation