Skip to main content
Log in

Performance Optimization of Two-Stage Exoreversible Thermoelectric Converter in Electrically Series and Parallel Configuration

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A two-stage exoreversible semiconductor thermoelectric converter (TEC) with internal heat transfer is proposed in two different configurations, i.e., electrically series and electrically parallel. The TEC performance assuming Newton’s heat transfer law is evaluated through a combination of finite-time thermodynamics (FTT) and nonequilibrium thermodynamics. A formulation based on the power output versus working electrical current and efficiency versus working electrical current is applied in this study. For fixed total number of thermoelectric elements, the current–voltage (IV) characteristics of the series and parallel configurations have been obtained for different combinations of thermoelectric elements in the top and bottom stage. The number of thermoelectric elements in the top stage has been optimized to maximize the power output of the TEC in the electrically series and parallel modes. Thermodynamic models for a multistage TEC system considering internal irreversibilities have been developed in a matrix laboratory Simulink environment. The effect of load resistance on V opt, I opt, V oc, and I sc for different combinations of thermoelectric elements in the top and bottom stage has been analyzed. The IV characteristics obtained for the two-stage series and parallel TEC configurations suggest a range of load resistance values to be chosen, in turn indicating the suitability of the parallel rather than series configuration when designing real multistage TECs. This analysis will be helpful in designing actual multistage TECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

Power output of the converter (W)

η :

Thermal efficiency of thermoelectric converter

Q :

Rate of heat transfer (W)

K :

Thermal conductance of the semiconductor couple (W/K)

M :

Total number of pairs of thermoelectric elements of thermoelectric converter

n :

Pairs of thermoelectric elements of top stage of thermoelectric converter

m :

Pairs of thermoelectric elements of bottom stage of thermoelectric converter

R :

Total internal electrical resistance of the semiconductor couple (Ω)

I :

Working electrical current (A)

T :

Temperature (K)

V :

Voltage (V)

TEC:

Thermoelectric converter

α :

Seebeck coefficient (V/K)

Δ:

Difference

1:

Top stage of thermoelectric converter

2:

Bottom stage of thermoelectric converter

h:

Hot side/heat source of TEC

c:

Cold side/sink side of TEC

References

  1. S.W. Angrist, Direct Energy Conversion, 4th ed. (Boston: Allyn and Bacon, 1992), p. 57.

    Google Scholar 

  2. D.M. Rowe, Handbook of Thermoelectrics (New York: CRC Press, 1995), p. 42.

    Book  Google Scholar 

  3. F.J. Di Salvo, Science 285, 703 (1999).

    Article  Google Scholar 

  4. X. Ma and S.B. Riffat, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  5. M.T. Barako, W. Park, A.M. Marconnet, M. Asheghi, and K.E. Goodson, J. Electron. Mater. 42, 372 (2013).

    Article  Google Scholar 

  6. S. Ovsyannikov, V.V. Schhennikov, Y.S. Ponosov, S.V. Gudina, V.G. Guk, and E.P. Skipetrov, J. Phys. D Appl. Phys. 37, 1151 (2004).

    Article  Google Scholar 

  7. G. Min, D.M. Rowe, and K. Kontostavlakis, J. Phys. D Appl. Phys. 37, 1301 (2004).

    Article  Google Scholar 

  8. A. Sisman and H. Yavuz, Energy 20, 573 (1995).

    Article  Google Scholar 

  9. J. Chen and Z.J. Yan, Appl. Phys. 79, 8823 (1996).

    Article  Google Scholar 

  10. J. Chen, Z. Yan, and L. Wu, Energy 22, 979 (1997).

    Article  Google Scholar 

  11. D.M. Rowe and G. Min, J. Power Sour. 73, 193 (1998).

    Article  Google Scholar 

  12. Y.H. Zhou, Xiamen Daxue Xuebao Ziran Kexueban 40, 882 (2001).

    Google Scholar 

  13. S. Sieniutycz and P. Salamon, Advances in Thermodynamics: Finite Time Thermodynamics and Thermoeconomics (New York: Taylor and Francis, 1990).

    Google Scholar 

  14. L. Chen and F. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (New York: Nova Science, 2004).

    Google Scholar 

  15. F. Sun, W. Chen, and L. Chen, J. Eng. Thermophys. 14, 13 (1993).

    Google Scholar 

  16. D.C. Agrawal and V.J. Menon, J. Phys. D Appl. Phys. 30, 357 (1997).

    Article  Google Scholar 

  17. J. Chen and C. Wu, J. Energ. Resour-ASME 122, 61 (2000).

    Article  Google Scholar 

  18. L. Chen, L. Jun, F. Sun, and C. Wu, Appl. Energy 82, 300 (2005).

    Article  Google Scholar 

  19. G. Liang, J. Zhou, and X. Huang, Appl. Energy 88, 5193 (2011).

    Article  Google Scholar 

  20. M. Chen and X. Gao, Energy 78, 364 (2014).

    Article  Google Scholar 

  21. M. Chen, J. Gao, Z. Kang, and J. Zhang, J. Therm. Sci. Eng. Appl. 4, 1 (2012).

    Article  Google Scholar 

  22. C. Vadstrup, E. Schaltz, and M. Chen, J. Electron. Mater. 42, 2203 (2013).

    Article  Google Scholar 

  23. J. Gao, K. Sun, L. Ni, M. Chen, Z. Kang, L. Zhang, Y. Xing, and J. Zhang, J. Electron. Mater. 41, 1043 (2012).

    Article  Google Scholar 

  24. M. Freunek, M. Muller, T. Ungan, W. Walker, and L.M. Reindl, J. Electron. Mater. 38, 1214 (2009).

    Article  Google Scholar 

  25. R. Mccarty and R. Piper, J. Electron. Mater. 44, 1896 (2015).

    Article  Google Scholar 

  26. A. Montecucco, J. Siviter, and A.R. Knox, Appl. Energy 123, 47 (2014).

    Article  Google Scholar 

  27. M. Chen, IEEE Trans. Ind. Electron. 61, 2776 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Hans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hans, R., Manikandan, S. & Kaushik, S. Performance Optimization of Two-Stage Exoreversible Thermoelectric Converter in Electrically Series and Parallel Configuration. J. Electron. Mater. 44, 3571–3580 (2015). https://doi.org/10.1007/s11664-015-3890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3890-6

Keywords

Navigation