Skip to main content
Log in

High-Performance Simultaneous Two-Photon Absorption Upconverted Stimulated Single-Component Sr2V2O7 Phosphor for White LEDs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Notwithstanding the wide use of white light-emitting diodes (w-LEDs), conventionally consisting of multiple emitting components, some inevitable issues still exist nowadays, such as the intrinsic color balance, device complexity, and high cost associated with such multiple emitting components. We have synthesized simultaneous two-photon absorption upconverted stimulated single-component Sr2V2O7 phosphor for use in w-LEDs. Due to the photon avalanche upconversion, the as-grown phosphor exhibits an enhanced photoluminescence spectrum in the range of 400 nm to 650 nm for white light when excited by red light at 693 nm. Moreover, when evenly dispersed in polyethylene glycol dispersant, the as-grown phosphor simultaneously produced strong visible white light when using an excitation wavelength λ ex of 693 nm, suggesting a possible route to produce w-LEDs by using red chips as an excellent substitute for traditional w-LEDs with multiple emitting components based on rare-earth metals. Finally, density functional calculations were performed using the generalized gradient approximation to study the electronic structure of Sr2V2O7 crystal. A reasonable model is proposed to explain the two-photon absorption luminescence mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.S. Liu, D.T. Tu, H.M. Zhu, R.F. Li, W.Q. Luo, and X.Y. Chen, Adv. Mater. 22, 3266 (2010).

    Article  Google Scholar 

  2. F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X.G. Liu, Nature 463, 1061 (2010).

    Article  Google Scholar 

  3. G.G. Zhang, C.M. Liu, J. Wang, X.J. Kuang, and Q.J. Su, Mater. Chem. 22, 2226 (2012).

    Article  Google Scholar 

  4. D.Q. Chen, Y.L. Yu, H. Lin, P. Huang, Z.F. Shan, and Y.S. Wang, Opt. Lett. 35, 220 (2010).

    Article  Google Scholar 

  5. P. Li, Q. Peng, and Y.D. Li, Adv. Mater. 21, 1945 (2009).

    Article  Google Scholar 

  6. D.Q. Chen, Y.L. Yu, F. Huang, H. Lin, P. Huang, A.P. Yang, Z.X. Wang, and Y.S. Wang, J. Mater. Chem. 22, 2632 (2012).

    Article  Google Scholar 

  7. D.T. Tu, L.Q. Liu, Q. Ju, Y.S. Liu, H.M. Zhu, R.F. Li, and X.Y. Chen, Angew. Chem. Int. Ed. 50, 6306 (2011).

    Article  Google Scholar 

  8. N. Guo, Y.J. Huang, M. Yang, Y.H. Song, Y.H. Zheng, and H.P. You, Phys. Chem. Chem. Phys. 13, 15077 (2011).

    Article  Google Scholar 

  9. W. Ki and J. Li, J. Am. Chem. Soc. 130, 8114 (2008).

    Article  Google Scholar 

  10. H.A. Hőppe, M. Daub, and M.C. Brőhmer, Chem. Mater. 19, 6358 (2007).

    Article  Google Scholar 

  11. M.S. Wang, S.P. Guo, Y. Li, J.P. Cai, G. Xu, W.W. Zhou, F.K. Zheng, and G.C. Guo, J. Am. Chem. Soc. 131, 13572 (2009).

    Article  Google Scholar 

  12. S. Sapra, S. Mayilo, T.A. Klar, A.L. Rogach, and J.A. Sammons, Adv. Mater. 19, 569 (2007).

    Article  Google Scholar 

  13. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, Nat. Mater. 7, 735 (2008).

    Article  Google Scholar 

  14. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, J. Phys. Chem. C 114, 5160 (2010).

    Article  Google Scholar 

  15. R. Singh and S.J. Dhoble, Bull. Mater. Sci. 34, 557 (2011).

    Article  Google Scholar 

  16. W.Q. Yang, Z.L. Liu, J. Chen, H. Li, L. Zhang, H. Pan, B. Wu, and Y. Lin, Sci. Rep. 5, 10460 (2015)

  17. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  18. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  19. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  20. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  Google Scholar 

  21. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  22. A.A. Vedernikov, YuA Velikodnyi, V.V. Ilyukhin, and V.K. Trunov, Dok. Akad. Nauk SSSR 263, 101 (1982).

    Google Scholar 

  23. W.Q. Yang, H.G. Liu, M. Gao, Y. Bai, J.T. Zhao, X.D. Xu, B. Wu, W.C. Zheng, G.K. Liu, and Y. Lin, Acta Mater. 61, 5096 (2013).

    Article  Google Scholar 

  24. W.Q. Yang, H.G. Liu, G.K. Liu, Y. Lin, M. Gao, X.Y. Zhao, W.C. Zheng, Y. Chen, J. Xu, and L.Z. Li, Acta Mater. 60, 5399 (2012).

    Article  Google Scholar 

  25. F.C. Hawthorne and C. Calvo, J. Solid State Chem. 22, 157 (1977).

    Article  Google Scholar 

  26. S. Benmokhtar, A.E. Jazouli, J.P. Chaminade, P. Gravereau, F. Guillen, and D.D. Waal, J. Solid State Chem. 177, 4175 (2004).

    Article  Google Scholar 

  27. B.V. Rao and S. Buddhudu, Mater. Chem. Phys. 111, 65 (2008).

    Article  Google Scholar 

  28. A. Mer, S. Obbade, M. Rivenet, C. Renard, and F. Abraham, J. Solid State Chem. 185, 180 (2012).

    Article  Google Scholar 

  29. V.R. Bandi, B.K. Grandhe, M. Jayasimhadri, K. Jang, H.S. Lee, S.S. Yi, and J.H. Jeong, J. Cryst. Growth 326, 120 (2011).

    Article  Google Scholar 

  30. Y.L. Huang, Y.M. Yu, T.J. Tsuboi, and H.J. Seo, Opt. Exp. 20, 4360 (2012).

    Article  Google Scholar 

  31. Y.S. Hu, W.D. Zhuang, H.Q. Ye, D.H. Wang, S.S. Zhang, and X.W. Huang, J. Alloys Compd. 390, 226 (2005).

    Article  Google Scholar 

  32. Z. Ci, Y. Wang, J. Zhang, and Y. Sun, Phys. B 403, 670 (2008).

    Article  Google Scholar 

  33. Z.L. Wang, H.B. Liang, and M.L. Gong, J. Alloys Compd. 432, 308 (2007).

    Article  Google Scholar 

  34. C.J. Ballhausen, Introduction to Ligand Field Theory (New York: McGraw-Hill, 1962).

    Google Scholar 

  35. Q.L. Zhang, C.X. Guo, and C.S. Shi, J. Lumin. 21, 353 (2000).

    Google Scholar 

  36. Q.L. Zhang, C.X. Guo, C.S. Shi, Y.G. Wei, Z.M. Qi, and Y.J. Tao, Chin. Rare Earth Soc. 19, 1 (2001).

    Article  Google Scholar 

  37. I.I. Karpov, B.N. Grechushnikov, and V.F. Koryagin, Sov. Phys. Dokl. 23, 492 (1978).

    Google Scholar 

  38. O.P. Agarwal and P. Chand, Solid State Commun. 52, 417 (1984).

    Article  Google Scholar 

  39. W.Q. Yang and W.C. Zheng, Spectrosc. Lett. 44, 354 (2011).

    Article  Google Scholar 

  40. M.K. Wermuth and H.U. Güdel, J. Am. Chem. Soc. 121, 10102 (1999).

    Article  Google Scholar 

  41. S. Sivakumar, F.C.J. Veggel, and P.S. May, J. Am. Chem. Soc. 129, 620 (2007).

    Article  Google Scholar 

  42. D.A. Fishman, C.M. Cirloganu, S. Webster, L.A. Padilha, M. Monroe, D.J. Hagan, and E.W. Stryland, Nat. Photon. 5, 561 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51202023), Sichuan Province Science and Technology Plan Project (No. 2015JQ0013), and the Fundamental Research Funds for the Central Universities (A0920502051408-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqing Yang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Zhang, L., Jin, L. et al. High-Performance Simultaneous Two-Photon Absorption Upconverted Stimulated Single-Component Sr2V2O7 Phosphor for White LEDs. J. Electron. Mater. 44, 3465–3470 (2015). https://doi.org/10.1007/s11664-015-3880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3880-8

Keywords

Navigation