Skip to main content

Electrical Bistabilities and Conduction Mechanisms of Nonvolatile Memories Based on a Polymethylsilsesquioxane Insulating Layer Containing CdSe/ZnS Quantum Dots

Abstract

Nonvolatile memory (NVM) devices based on a metal–insulator–metal structure consisting of CdSe/ZnS quantum dots embedded in polymethylsilsesquioxane dielectric layers were fabricated. The current–voltage (IV) curves showed a bistable current behavior and the presence of hysteresis. The current–time (It) curves showed that the fabricated NVM memory devices were stable up to 1 × 104 s with a distinct ON/OFF ratio of 104 and were reprogrammable when the endurance test was performed. The extrapolation of the It curve to 105 s with corresponding current ON/OFF ratio 1 × 105 indicated a long performance stability of the NVM devices. Schottky emission, Poole–Frenkel emission, trapped-charge limited-current and Child–Langmuir law were proposed as the dominant conduction mechanisms for the fabricated NVM devices based on the obtained IV characteristics.

This is a preview of subscription content, access via your institution.

References

  1. T.W. Kim, Y. Yang, F.S. Li, and W.L. Kwan, NPG Asia Mater. 4, e18 (2013).

    Article  Google Scholar 

  2. S.K. Hong, J.E. Kim, S.O. Kim, S.Y. Choi, and B.J. Cho, IEEE Electron Device Lett. 31, 1005 (2010).

    Article  Google Scholar 

  3. D.I. Son, D.H. Park, W.K. Choi, S.H. Cho, W.T. Kim, and T.W. Kim, Nanotechnology 20, 195203 (2009).

    Article  Google Scholar 

  4. D.Y. Yun, J.K. Kwak, J.H. Jung, T.W. Kim, and D.I. Son, Appl. Phys. Lett. 95, 143301 (2009).

    Article  Google Scholar 

  5. J.H. Jung, J.Y. Jin, I. Lee, T.W. Kim, H.G. Roh, and Y.H. Kim, Appl. Phys. Lett. 88, 112107 (2006).

    Article  Google Scholar 

  6. P.C. Ooi, F. Li, C.P. Veeramalai, and T. Guo, Jpn. J. Appl. Phys. 53, 125001 (2014).

    Article  Google Scholar 

  7. D. Kessler, C. Teutsch, and P. Theato, Macromol. Chem. Phys. 209, 1437 (2008).

    Article  Google Scholar 

  8. R.H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki, Chem. Rev. 95, 1409 (1995).

    Article  Google Scholar 

  9. H.W. Ro, K.J. Kim, P. Theato, D.W. Gidley, and D.Y. Yoon, Macromolecules 38, 1031 (2005).

    Article  Google Scholar 

  10. W.K. Lee, H.Y. Wong, and K.C. Aw, Microelectron. Eng. 88, 2837 (2011).

    Article  Google Scholar 

  11. D.A. Loy and K.J. Shea, Chem. Rev. 95, 1431 (1995).

    Article  Google Scholar 

  12. J. Veres, S.D. Ogier, S.W. Leeming, D.C. Cupertino, and S. Mohialdin, Khaffaf. Adv. Funct. Mater. 13, 199 (2003).

    Article  Google Scholar 

  13. D.Y. Yun, H.M. Park, S.W. Kim, and T.W. Kim, Carbon 45, 244 (2014).

    Article  Google Scholar 

  14. Y. Zhou, D.Y. Yun, S.W. Kim, and T.W. Kim, Appl. Phys. Lett. 105, 233303 (2014).

    Article  Google Scholar 

  15. D.I. Son, J.H. Kim, D.H. Park, W.K. Choi, F. Li, J.H. Ham, and T.W. Kim, Nanotechnology 19, 055204 (2008).

    Article  Google Scholar 

  16. R. Wargnier, A.V. Baranov, V.G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, Nano Lett. 4, 451 (2004).

    Article  Google Scholar 

  17. P. Liu, Y. Wu, Y. Li, B.S. Ong, and S. Zhu, J. Am. Chem. Soc. 128, 4554 (2006).

    Article  Google Scholar 

  18. P.C. Ooi, K.C. Aw, W. Gao, and K.A. Razak, Thin Solid Films 544, 597 (2013).

    Article  Google Scholar 

  19. Z. Ahmad, P.C. Ooi, K.C. Aw, and M.H. Sayyad, Solid State Commun. 151, 297 (2011).

    Article  Google Scholar 

  20. W.K. Lee, H.Y. Wong, and K.C. Aw, Solid State Commun. 151, 1541 (2011).

    Article  Google Scholar 

  21. P.T. Liu, T.C. Chang, K.C. Hsu, T.Y. Tseng, L.M. Chen, C.J. Wang, and S.M. Sze, Thin Solid Films 414, 1 (2002).

    Article  Google Scholar 

  22. P. Kumar, A. Misra, M.N. Kamalasanan, S.C. Jain, and V. Kumar, J. Phys. D 40, 561 (2007).

    Article  Google Scholar 

  23. W. Brutting, S. Berleb, and A.G. Muckl, Synth. Met. 122, 99 (2001).

    Article  Google Scholar 

  24. V. Kannan and J.K. Rhee, Appl. Phys. Lett. 99, 143504 (2011).

    Article  Google Scholar 

  25. S. Kolliopoulou, P. Dimitrakis, P. Normand, H.L. Zhang, N. Cant, S.D. Evans, S. Paul, C. Pearson, A. Molloy, M.C. Petty, and D. Tsoukalas, J. Appl. Phys. 94, 5234 (2003).

    Article  Google Scholar 

  26. I.S. Shin, J.M. Kim, J.H. Jeun, S.H. Yoo, Z.Y. Ge, J.I. Hong, J.H. Bang, and Y.S. Kim, Appl. Phys. Lett. 100, 183307 (2012).

    Article  Google Scholar 

  27. A. Rose, Phys. Rev. 97, 1538 (1955).

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A2A 1A01016467).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fushan Li or Tae Whan Kim.

Additional information

Zehao Ma and Poh Choon Ooi have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Ooi, P.C., Li, F. et al. Electrical Bistabilities and Conduction Mechanisms of Nonvolatile Memories Based on a Polymethylsilsesquioxane Insulating Layer Containing CdSe/ZnS Quantum Dots. J. Electron. Mater. 44, 3962–3966 (2015). https://doi.org/10.1007/s11664-015-3872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3872-8

Keywords

  • Nonvolatile memory
  • polymethylsilsesquioxane
  • CdSe/ZnS quantum dot
  • electrical bistability
  • conduction mechanisms