Skip to main content

Advertisement

Log in

Characterization of Copper Oxide Nanoparticles Fabricated by the Sol–Gel Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles were successfully prepared by a sol–gel technique. An aqueous solution of copper nitrate Cu(NO3)2 and acetic acid was used as precursor. On addition of sodium hydroxide (NaOH) a precipitate of copper oxide was immediately formed. The copper oxide nanoparticles were characterized by use of x-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential thermal analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry, and scanning electron microscopy (SEM). The XRD pattern contained sharp peaks of copper oxide nanoparticles with mixed cuprite and tenorite phases. Use of the Debye–Scherer equation showed that the crystallite size of the copper oxide nanoparticles increased with increasing annealing temperature. FTIR spectra revealed vibration of the CuO band at 473 cm−1; a band at 624 cm−1 was attributed to Cu2O. Maximum coercivity and saturation magnetization of the nanoparticles were 276 Oe and 0.034 emu/g, respectively. SEM micrographs of the nanoparticles revealed the presence of spherical nanoparticles of the tenorite phase whereas the cuprite phase was in the form of a compact deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Saravanan, P. Shankar, G.K. Mani, and J.B.B. Rayappan, J. Annal. Appl. Pyrol. 11, 272 (2015).

    Article  Google Scholar 

  2. O. Messaoudi, H. Makhlouf, A. Souissi, I.B. Assaker, M. Karyaoui, A. Bardaoui, M. Oueslati, and R. Chtourou, J. Alloys Compd. 611, 142 (2014).

    Article  Google Scholar 

  3. M.R. Johan, M. Shahadan, M. Suan, N.L. Hawari, and H.A. Ching, Int. J. Electrochem. Sci. 6, 6094 (2011).

    Google Scholar 

  4. P. Mallick, Proc. Natl. Acad. Sci., India, Sect. A 84, 387 (2014).

    Article  Google Scholar 

  5. K.H. Yoon, W.J. Choi, and D.H. Kang, Thin Solid Films 372, 250 (2000).

    Article  Google Scholar 

  6. T.J. Richardson, J.L. Slack, and M.D. Rubin, Appl. Phys. Lett. 98, 262 (2000).

    Google Scholar 

  7. K. Zhou, R. Wang, B. Xu, and Y. Li, Nano-technology 17, 3939 (2006).

    Google Scholar 

  8. G. Joseph and J.A. Kundig, Copper: Its Trade, Manufacture, Use and Environmental Status (Materials Park, OH: ASM International, 1999).

    Google Scholar 

  9. R. Etefagh, E. Azhir, and N. Shahtahmasebi, Sci. Iran. F 20, 1055 (2013).

    Google Scholar 

  10. J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, and X.Q. Xin, J. Solid State Chem. 147, 516 (2000).

    Article  Google Scholar 

  11. R.V. Kumar, Y. Diamant, and A. Gedanken, Chem. Mater. 12, 2301 (2000).

    Article  Google Scholar 

  12. C.L. Carnes, J. Stipp, and K.J. Klabunde, Langmuir 18, 1352 (2002).

    Article  Google Scholar 

  13. O.H. Abd-Elkader and N.M. Deraz, Int. J. Electrochem. Sci. 8, 8614 (2013).

    Google Scholar 

  14. N. Bouazizi, R. Bargougui, A. Oueslati, and R. Benslama, Adv. Mater. Lett. 6, 158 (2015).

    Google Scholar 

  15. S. Devi and M. Srivastva, Ind. J. Phys. 84, 1561 (2010).

    Article  Google Scholar 

  16. M. Riazian, Ind. J. Phys. 87, 991 (2013).

    Article  Google Scholar 

  17. Z.N. Kayani, S. Arshad, S. Riaz, and S. Naseem, IEEE Trans. Magn. 50, 2200404 (2014).

    Google Scholar 

  18. Z.N. Kayani, F. Saleemi, and I. Batool, Appl. Phys. A (2015). doi:10.1007/s00339-015-9019-1.

    Google Scholar 

  19. S. Srivastava, M. Kumar, A. Agrawal, and S. Dwivedi, IOSR-JAP 5, 61 (2013).

    Article  Google Scholar 

  20. S.S. Alias, A.B. Ismail, and A.A. Mohamad, J. Alloys Compd. 499, 231 (2010).

    Article  Google Scholar 

  21. M. Ohanishi, A. Kusachi, S. Kobayashi, and J. Yamakawa, J. Miner 102, 233 (2007).

    Google Scholar 

  22. E. Darezereshki and F. Bakhtiari, J. Min. Metall. Sect. B 49, 21 (2013).

    Article  Google Scholar 

  23. Z. Endut, M. Hamdi, and W.J. Basirun, Thin Solid Films 528, 213 (2013).

    Article  Google Scholar 

  24. E. Darezereshki and F. Bakhtiari, J. Min. Metall. Sect. B 47, 73 (2011).

    Article  Google Scholar 

  25. K. Santra, C.K. Sarkar, M.K. Mukherjee, and B. Cosh, Thin Solid Films 213, 226 (1992).

    Article  Google Scholar 

  26. J.P. Yang, F.C. Meldrum, and J.H. Fendler, J. Phys. Chem. 99, 5500 (1995).

    Article  Google Scholar 

  27. K. Maaz, A. Mumtaz, K.S. Hasanain, and A. Cylan, J.␣Magn. Magn. Mater. 308, 289 (2007).

    Article  Google Scholar 

  28. S. Rehman, A. Mumtaz, and S.K. Hasanain, J. Nanopart. Res. 13, 2497 (2011).

    Article  Google Scholar 

  29. J.W. Chen and G.N. Rao, IEEE Trans. Magn. 47, 3772 (2011).

    Article  Google Scholar 

  30. D. Gao, J. Zhang, J. Zhu, J. Qi, Z.I. Zhang, W. Sui, H. Shi, and D. Xue, Nanoscale Res. Lett. 5, 769 (2010).

    Article  Google Scholar 

  31. C. Maccato, Q. Simon, G. Carraro, D. Barreca, A. Gasparotto, O.I. Lebedev, S. Turner, and G.V. Tendeloo, J. Adv. Microsc. Res. 7, 84 (2012).

    Article  Google Scholar 

  32. N. Kumaresan, K. Ramamurthi, S. Mathuri, M.M.A. Sinthiya, T. Manimozhi, M.M. Margoni, and R. Rameshbabu, Int. J. Chem. Tech Res. 7, 1598 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohra Nazir Kayani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayani, Z.N., Umer, M., Riaz, S. et al. Characterization of Copper Oxide Nanoparticles Fabricated by the Sol–Gel Method. J. Electron. Mater. 44, 3704–3709 (2015). https://doi.org/10.1007/s11664-015-3867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3867-5

Keywords

Navigation